U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A 2017 Planetary-Scale Power Outage: Weather and Ecological Impacts of a Total Solar Eclipse
Published: January 02, 2019
Posted: April 22, 2019

A network of eddy covariance flux towers enabled the detailed study of micrometeorological and ecosystem responses to a total solar eclipse.

The Science
Cyclic variations in solar energy at the Earth’s surface is the reason we experience changes in weather and the driver of the natural rhythms of ecosystems. Solar eclipses offer the rare chance to study how the weather and ecosystems respond to an abrupt environmental disruption of known intensity and duration—allowing for an outdoor controlled light experiment at the scale of whole ecosystems. This enables novel analyses of ecosystem processes and biosphere-atmosphere interactions. Additionally, rare natural events such as a total solar eclipse captures the attention of the public, which can be the starting point for discussions that advance the general science education.

The Impact
Knowledge of these ecosystems responses to such an abrupt perturbation of the forces driving energy, water, and carbon through those systems can inform models that scientists use to forecast weather or evaluate probable effects of future climate on ecosystems.

Summary
Mid-Missouri experienced up to 2 minutes 40 seconds of totality at around noontime during the total eclipse of 2017. We conducted the Mid-Missouri Eclipse Meteorology Experiment (MMEME) to examine land-atmosphere interactions during the eclipse. Here, research examining the eclipse responses in three contrasting ecosystems (forest, prairie, and soybeans) is described. There was variable cloudiness around at the beginning and end of the eclipse at the forest and prairie, however, skies cleared during the eclipse. Unfortunately, there were thunderstorms at the soybean site, which masked the eclipse effect and exposed the field to cold outflow. Turbulence and wind speeds decreased during the eclipse at all sites. However, there was amplified turbulent intensity at the soybean during the passage of a gust front. Evaporation and heating of the atmosphere by the land surface shut off during the eclipse as air became more stable, with the atmosphere actually supplying some heat to the surface at totality. Although the eclipse had a large effect on surface energy balances, the air temperature response was relatively muted due to the absence of topographic effects and the relatively moist land and atmosphere.

Contact (BER PM)
Daniel Stover, SC-23.1,
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov

Jeffrey Wood, University of Missouri
woodjd@missouri.edu
and
Lianhong Gu, Oak Ridge National Laboratory
lianhong-gu@ornl.gov

Funding
National Aeronautics and Space Administration, Goddard Space Flight Center
U. S. Department of Energy Biological and Environmental Research, Terrestrial Ecosystem Science
United States Department of Agriculture-Agricultural Research Service
National Science Foundation, Missouri EPSCoR

Publication
Wood JD, EJ Sadler, NI Fox, ST Greer, L Gu, PE Guinan, AR Lupo, PS Market, SM Rochette, A Speck, and LD White. “Land-atmosphere responses to a total solar eclipse in three ecosystems with contrasting structure and physiology.” Journal of Geophysical Research: Atmospheres 124(2), 530-543 (2019). [DOI: 10.1029/2018JD029630]

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)