U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Fundamental Understanding of Engineered Nanoparticle Stability in Aquatic Environments
Published: January 25, 2018
Posted: March 22, 2019

The Science
It is commonly true that a diluted colloidal suspension is more stable over time than a concentrated one, because dilution reduces collision rates, so delays formation of aggregates. However, we observed the opposite relationship between stability and concentration for some engineered ligand-coated nanoparticles.

The Impact
Because the stability of nanoparticles determines their physicochemical and kinetic behavior including toxicity, dilution induced instability needs to be understood to realistically predict the behavior of engineered ligand-coated nanoparticles in aqueous systems.

Summary
It is commonly true that a diluted colloidal suspension is more stable over time than a concentrated one, because dilution reduces collision rates of the particles, therefore delays formation of aggregates. However, this generalization does not apply for some engineered ligand-coated nanoparticles (NPs). We observed the opposite relationship between stability and concentration of NPs. We tested four different types of NPs; CdSe-11-mercaptoundecanoic acid, CdTe-polyelectrolytes, Ag-citrate, and Ag- polyvinylpirrolidone. The results showed that dilution alone induced aggregation and subsequent sedimentation of the NPs that were originally monodispersed at very high concentrations. Increased dilution caused NPs to progressively become unstable in the suspensions. The extent of the dilution impact on the stability of NPs is different for different types of NPs. We hypothesize that the unavoidable decrease in free ligand concentration in the aqueous phase following dilution causes detachment of ligands from the suspended NP cores. The ligands attached to NP core surfaces must generally approach exchange equilibrium with free ligands in the aqueous phase, therefore ligand detachment and destabilization are expected consequences of dilution. More studies are necessary to test this hypothesis. Because the stability of NPs determines their physicochemical and kinetic behavior including toxicity, dilution induced instability needs to be understood to realistically predict the behavior of engineered ligand-coated nanoparticles in aqueous systems.

Contacts (BER PM)
David Lesmes, SC-23.1
david.lesmes@science.doe.gov

(PI Contact)
Jiamin Wan, Lawrence Berkeley National Laboratory
jwan@lbl.gov

Funding
U.S. Department of Energy (DOE) Subsurface Biogeochemical Research Program, DOE Office of Science, Office of Biological and Environmental Research, under contract DE-AC02- 05CH11231.

Publications
Wan, J., Y. Kim, M.J. Mulvihill, and T. K. Tokunaga. “Dilution destabilizes engineered ligand-coated nanoparticles in aqueous suspensions.” Environmental Toxicology and Chemistry 37(5), 1301-1308 (2018).[DOI:10.1002/etc.4103]

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)