U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Exploring Factors Influencing Arctic Melt Ponds
Published: January 24, 2019
Posted: March 07, 2019

ARM data show that warm air incursions play an important role in the development of Arctic melt ponds.

The Science
The Arctic is warming faster than many areas around the globe. One reason for this is because earlier melt of sea ice results in heating from greater sunlight absorption. Melt ponds, pools of meltwater on the ice surface, are important in darkening the ice. This study seeks to understand what causes ponds to start forming, using data from the past 18 years at the Atmospheric Radiation Measurement (ARM) site in Utqiagvik (formerly Barrow), Alaska and a three-dimensional sea ice model with resolved melt ponds.

The Impact
The study finds that warm, moist air blowing in from the south may play a large role in the formation of melt ponds. The model shows that sunlight is the source of most of the energy but that pond formation is prevented by cooling from cold air passing over the surface and from infrared radiation loss to space. When the warming exceeds the loss of surface heat, ponds form. The study determined that reduction in and/or reversal of cooling by the air is more important in controlling melting than infrared radiation loss to space at this coastal study site. Changes in the timing and frequency of spring warm air incursions may have significant implications on the ice cover and provide predictive power for seasonal ice retreat.

Melt ponds on summer Arctic sea ice control surface albedo, governing energy and mass balance of the ice. The date ponds first form has been connected to interannual variations in ice retreat. This study evaluates the surface energy balance that governs this critical pond formation date. A three-dimensional sea ice model with resolved melt ponds is used to diagnose pond onset date at a coastal site across years with observed surface fluxes but incomplete pond observations. Results show that the combined sensible and latent heat flux is the best predictor of pond formation date. This finding supports the hypothesis that synoptic weather events transporting warm, moist air into the Arctic are key to initiating pond formation, triggering albedo feedbacks, and, by extension, ice retreat.

Contacts (BER PM)
Sally McFarlane
ARM Program Manager

(PI Contact)
Eric Skyllingstad
College of Oceanic and Atmospheric Sciences
Oregon State University

This research was supported by the National Science Foundation, grant ARC-1418064. Surface energy flux data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a U.S. Department of Energy (DOE) Office of Science user facility managed by The Office of Biological and Environmental Research (https:// doi.org/10.5439/1027372). We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Skyllingstad, E. D., and C. Polashenski. “Estimated heat budget during summer melt of Arctic first-year sea ice.” Geophysical Research Letters 45(21), 11,789-11,797 (2018). [DOI: 10.1029/2018GL080349]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)