BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

ARM Lassos a New Parameterization
Published: January 23, 2019
Posted: March 07, 2019

The ARM LASSO project provides the high resolution simulations and observations needed to comprehensively evaluate a new model formulation of boundary layer mixing and shallow cloud formation.

The Science
Shallow cumulus fields have important effects on the surface and atmosphere, but are challenging to model and difficult to observe.  Within weather and climate models, numerical formulations (called parameterizations) are needed to represent turbulent mixing processes that cannot be explicitly resolved in the model.  A new class of parameterizations, which integrate both the boundary layer mixing processes and cloud formation, are starting to be used more widely in weather and climate models.  These formulations are known as “eddy diffusivity mass flux (EDMF)” parameterizations.  In this study, a new EDMF parameterization implemented in the Weather and Research Forecasting (WRF) model is evaluated against a set of observationally-forced high resolution large eddy simulations and observations produced from the Atmospheric Radiation Measurement (ARM) user facility’s LASSO project. 

The Impact
The new EDMF parameterization for boundary layer mixing and cloud performed very well in the single column tests conducted in this work.  The 15 cases examined in this study are far more than shown in previous work evaluating new parameterizations, and allow scientists to consider how the boundary layer and shallow cloud schemes handle the variation in cloud amount from day to day and across different forcing data. This study shows the value of the LASSO dataset in moving beyond single case studies and the typical idealized test cases used during previous studies. Using multiple simulated days under the same meteorological regime of shallow convection helps identify how well EDMF captures this regime.

Representation of shallow cumulus is a challenge for mesoscale numerical weather prediction models. These cloud fields have important effects on temperature, solar irradiance, convective initiation, and pollutant transport, among other processes. Recent improvements to physics schemes available in the Weather Research and Forecasting (WRF) Model aim to improve representation of shallow cumulus, in particular over land. The DOE large-eddy simulation (LES) Atmospheric Radiation Measurement (ARM) Symbiotic Simulation and Observation Workflow (LASSO) project provides several cases that are used here to test the new physics improvements. The LASSO cases use multiple large-scale forcings to drive large-eddy simulations, and the model output is easily compared to output from WRF single-column simulations driven with the same initial conditions and forcings. The new Mellor-Yamada-Nakanishi-Niino (MYNN) eddy diffusivity mass-flux (EDMF) boundary layer and shallow cloud scheme produces clouds with timing, liquid water path, and cloud fraction that agree well with LES over a wide range of those variables. Here we examine those variables and test the scheme’s sensitivity to perturbations of a few key parameters. We also discuss the challenges and uncertainties of single-column tests. The older, simpler total energy mass-flux (TEMF) scheme is included for comparison, and its tuning is improved. This is the first published use of the LASSO cases for parameterization development, and the first published study to use such a large number of cases with varying cloud amount. This is also the first study to use a more precise combined infrared and microwave retrieval of liquid water path to evaluate modeled clouds.

Contacts (BER PM)
Sally McFarlane
ARM Program Manager

PI Contact
Wayne M. Angevine
NOAA Earth System Research Laboratory

This work was supported by the NOAA Atmospheric Science for Renewable Energy program. Gustafson and Endo are supported by the DOE Office of Science Biological and Environmental Research via the Atmospheric Radiation Measurement User Facility. Kay Suselj’s research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Parts of his research were supported by the NASA MAP Program and the NOAA/CPO MAPP Program.

Angevine, WM, J Olson, J Kenyon, WI Gustafson, S Endo, K Suselj, and DD Turner. "Shallow Cumulus in WRF Parameterizations Evaluated against Lasso Large-Eddy Simulations." Monthly Weather Review 146(12), 4303-4322 (2018). [DOI:10.1175/mwr-d-18-0115.1]

Topic Areas:

  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)