U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Coastal Erosion: Priming Microbial Changes
Published: December 19, 2018
Posted: March 05, 2019

Study shows dissolved organic matter can encourage changes in microbial community composition and gene abundance in marine environments.

The Science
Coastline erosion can send ancient sediments tumbling into the sea to decompose. When this land organic material encounters organic matter derived from algae, decomposition speeds up, a process called priming. But what does priming do to the marine microbial community? Scientists studied changes in how the community functions when exposed to this sedimentary material. They discovered that, when the algal and sedimentary material are both present, the dominant micro-organisms shift, and certain genes increase in abundance.

The Impact
The Atlantic Coast faces both rising sea levels and more frequent extreme storms. These changes cause erosion, especially from wetlands like salt marshes. This erosion frees ancient sediments, and the carbon contained in them, to flow into the sea. Determining how this previously stable sedimentary carbon reacts once exposed to the diverse organic materials and microbial communities in seawater is of critical importance to understanding the full impact of coastal erosion on ecosystems. 

Summary
In laboratory experiments, scientists from the University of Florida, Pacific Northwest National Laboratory’s (PNNL’s) Marine Sciences Laboratory, University of Washington, Texas A&M University, and EMSL examined how marine microbial communities responded to the presence of dissolved organic matter. The scientific team compared effects of two kinds of dissolved organic matter: wetland peat and dissolved organic matter from aquatic algae. Using EMSL’s powerful Fourier-transform ion cyclotron resonance mass spectrometer and liquid chromatography-mass spectrometer, they looked at how microbial communities reacted to these two types of matter, separately and in combination. The scientists found that the algal dissolved organic matter stimulated carbon dioxide production in microbial communities. The addition of the wetland peat further enhanced this production. Under the Facilities Integrating Collaborations for User Science (FICUS) program, the scientists then worked with the Joint Genome Institute to study DNA from the microbial communities. They discovered that the community composition and functional gene abundance also changed with each organic matter treatment. For example, scientists observed 23 genes associated with pathways to break down peat organic matter uniquely present when peat and algal material were combined. These results provide the first glimpse at the genomic mechanisms underlying aquatic priming effects and will help determine the influence of coastal erosion on global changes in carbon.

BER PM Contact
Paul Bayer, SC-23.1
Ramana Madupu, SC-23.2

PI Contact
Nicholas Ward
PNNL’s Marine Sciences Laboratory
nicholas.ward@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL) and the Joint Genome Institute, both DOE Office of Science User Facilities. A portion of this research was performed under the Facilities Integrating Collaborations for User Science (FICUS) initiative and PNNL laboratory-directed research and development funding.

Publication
Ward, N.D., E.S. Morrison, Y. Liu, A. Rivas-Ubach, T.Z. Osborne, A.V. Ogram, and T.S. Bianchi. “Marine microbial community responses related to wetland carbon mobilization in the coastal zone.” Limnology and Oceanography: Letters 4(1), 25-33 (2018). [DOI:10.1002/lol2.10101]

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23 BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)