U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

The Shady Role of Shallow Clouds
Published: August 21, 2018
Posted: February 26, 2019

Cloud shadows influence shallow cloud size and water content.

The Science
Shallow clouds over land are usually only several kilometers wide and rarely produce rain, but they are numerous and quite effective at blocking the sun and modulating evaporation of water from the land surface. It is important that Earth system models accurately take into account the effect of these shallow clouds on the exchange of water and energy between the land surface and the atmosphere. A study by researchers at the U.S. Department of Energy’s (DOE) Pacific Northwest National Laboratory showed that shadows from shallow clouds create surface variability that affects the growth and evolution of the shallow cloud population itself and the exchange of water and energy between the surface and the clouds. Furthermore, the researchers found that the angle of the sun largely influences the way in which cloud shadows affect the exchange of water and energy between the surface and the clouds.

The Impact
This study shows the need to accurately consider the effect of shallow clouds and their shadows in atmospheric models used to simulate weather and climate. It could help guide improvements to the representation of shallow convection in Earth system models.

To improve predictions of Earth systems in response to environmental changes, researchers must take into account massive amounts of data across space and time. A key component of this puzzle is the role of the small yet energetic eddies that are not represented explicitly in state-of-the-art Earth system models. Researchers performed large-eddy simulations—high-resolution numerical simulations that explicitly resolve these energetic eddies in the atmosphere—of continental shallow clouds observed at the DOE Atmospheric Radiation Measurement (ARM) user facility’s Southern Great Plains (SGP) atmospheric observatory. The large-eddy simulation domain was embedded inside a coarser-resolution domain and coupled to an interactive land surface model to accurately simulate the conditions over a range of different spatial scales.

The large-eddy simulations used very high spatial resolution (100 meters), and their domain size was comparable to that of a typical Earth system model grid box (30-100 kilometers). With this setup, researchers could explicitly model shallow clouds, their shadows at the surface, and other small-scale surface features (e.g., crop patches). By comparing simulations with and without small surface features, researchers could estimate their effect on the mean cloud properties. They found that the cooler surfaces in the cloud shadows influenced the circulations around the shallow clouds overhead and affected the size and water content of these clouds. Furthermore, the angle of the sun in the sky played a large role in this process due to its control over the shadow relative to the cloud.

Contacts (BER PMs)
Shaima Nasiri
Atmospheric System Research

Sally McFarlane
Atmospheric Radiation Measurement (ARM) user facility

(PNNL Contact)
Heng Xiao
Pacific Northwest National Laboratory

The U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research supported this research as part of the Atmospheric System Research program. Data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a DOE Office of Science user facility managed by the Office of Biological and Environmental Research. Model simulations were performed and archived at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science user facility.

Xiao, X., L.K. Berg, M. Huang. “The Impact of Surface Heterogeneities and Land-Atmosphere Interactions on Shallow Clouds Over ARM SGP Site.” Journal of Advances in Modeling Earth Systems 10(6), 1220-1244 (2018). [DOI:10.1029/2018MS001286]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Cross-Cutting: Scientific Computing and SciDAC
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)