U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Simplified Way to Predict the Function of Microbial Communities
Published: August 14, 2018
Posted: February 15, 2019

A pioneering study offers an easier approach to studying microbial functioning and could help scientists advance models of biogeochemical cycling.

The Science
In areas that flood frequently, microbial communities must adapt to repeated wet-dry cycles. Metabolic strategies help them survive, but these strategies can also influence nutrient cycling and atmospheric emissions from soils and sediments. An international team of scientists examined soils from rice paddies to understand how microbial communities function during floods. Their work suggests analyzing carbon that microbes extracted from water may prove critical to understanding and modeling these important communities.

The Impact
How microbes function in often-flooded soils has profound impacts on crop production, in part because they can deliver nutrients to plants and stabilize or release atmospheric emissions from soils. Understanding how microbial communities function in soils—before, during, and after flooding—can help scientists improve modeling and promote beneficial changes in those communities.

Summary
To understand how microbial activity varied in response to flooding, scientists studied three types of organic matter that are commonly found in three types of rice paddy soils: dried rice straw, charred rice straw, and cattle manure. Team members came from the SLAC National Accelerator Laboratory; Stanford University; Swedish University of Agricultural Sciences; University of California, Riverside; and EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy Office of Science user facility. While other studies used a similar approach to look at well-aerated, upland soil and simple carbon compounds, or single micro-organisms, none examined the full complexity of natural soil and carbon substrates during the transition from dry to flooded conditions. The team used EMSL’s Fourier-transform ion cyclotron resonance mass spectrometer to analyze dissolved carbon and then observed how microbial functioning changed. These pioneering experiments produced surprising results. Not only were researchers able to better understand how microbes breathed and obtained energy during flooded conditions, but they discovered that a focus on water-extractable carbon was sufficient to predict microbial respiration rates from diverse metabolic strategies. Though more in-depth studies will be important to reveal underlying functions, the insights gained from this study give scientists a proxy to begin modeling these complex interactions.

BER PM Contact
Paul Bayer, SC-23.1

PI Contact
Kristin Boye
Stanford University
kboye@slac.stanford.edu

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility; SLAC National Accelerator Laboratory and the BER Subsurface Biogeochemical Research program; Swedish Foundation for International Cooperation in Research and Higher Education; Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning; and U.S. National Science Foundation.

Publication
Boye, K., A.H. Hermann, M.V. Schaefer, M.M. Tfaily, and S. Fendorf. “Discerning Microbially Mediated Processes During Redox Transitions in Flooded Soils Using Carbon and Energy Balances.” Frontiers in Environmental Science 6 Article 15 (2018). [DOI:10.3389/fenvs.2018.00015]

Related Links
A Simplified Way to Predict the Function of Microbial Communities EMSL science highlight

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology Infrastructure

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)