U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Observing Clouds in 4D with Multi-View Stereo Photogrammetry
Published: August 29, 2018
Posted: February 15, 2019

Six cameras are revolutionizing ARM’s observations of shallow cumulus clouds.

The Science
Shallow cumulus clouds - the cotton-ball clouds that drift overhead on partly cloudy days - are hard to observe and, therefore, hard to model and predict.  Six digital cameras are situated in pairs at a distance of 6 kilometers from the Atmospheric Radiation Measurement user facility site in Oklahoma with a spacing of 500 meters between cameras in a pair. These pairs of cameras provide stereoscopic views of shallow clouds from all sides; when these data are combined, they allow for a complete stereo reconstruction. This ring of cameras makes it possible to observe these clouds with much greater detail than ever before.

The Impact
Shallow cumulus clouds play a large role in cooling the Earth, so even small changes to their abundance as the planet warms could substantially ameliorate or exacerbate the warming.  These high-resolution observations will allow scientists to test their theories for the behavior of these important clouds.

Summary
Shallow cumulus clouds play a large role in Earth's current radiation balance, and their response to global warming makes a large and uncertain contribution to Earth's climate sensitivity. To develop accurate theories and parameterizations of shallow cloud cover, we need measurements of clouds' horizontal dimensions, their elevations, their depths, the rate at which they are created, the rate at which they dissipate, and how all of these factors vary with changes to the large-scale environment. Only observations that are high-resolution relative to individual clouds in all four dimensions (space and time) can provide these needed data.

Towards this end, we have installed a ring of cameras around the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site in Oklahoma. Six digital cameras are situated in pairs at a distance of 6 kilometers from the site and with a spacing of 500 meters between cameras in a pair. These pairs of cameras provide stereoscopic views of shallow clouds from all sides; when these data are combined, they allow for a complete stereo reconstruction. The result, called the Clouds Optically Gridded by Stereo (COGS) product, is a 4D grid of cloudiness covering a 6 km x 6 km x 6 km cube at a spatial resolution of 50 meters and a temporal resolution of 20 seconds. This provides an unprecedented set of data on the sizes, lifetimes, and lifecycles of shallow clouds.

Contacts (BER PM)
Shaima Nasiri
Atmospheric System Research
Shaima.Nasiri@science.doe.gov

Sally McFarlane
Atmospheric Radiation Measurement (ARM) user facility
Sally.McFarlane@science.doe.gov

Dorothy Koch
Earth System Modeling
Dorothy.koch@science.doe.gov


(PI Contact)
David Romps
Lawrence Berkeley National Laboratory and UC Berkeley
dromps@lbl.gov

Funding
This work was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement, Atmospheric System Research, and Climate Model Development and Validation programs through the Office of Science’s Biological and Environmental Research program under contract DE-AC02-05CH11231.

Publications
Romps, D.M., and R. Oktem. “Observing clouds in 4D with multi-view stereo photogrammetry.” Bulletin of the American Meteorological Society 99(12) 2575-2586 (2018). [DOI: 10.1175/BAMS-D-18-0029.1]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)