U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Community Matters When Using Algae to Produce Energy
Published: July 18, 2018
Posted: February 13, 2019

Algae that turn carbon dioxide into fuel feedstock are enhanced by surrounding bacteria.

The Science
Algae fix carbon. That is, they convert carbon dioxide in the air into other compounds, thus fixing atmospheric carbon in water or soil. Researchers showed that bacteria growing on certain algae increase carbon fixation. Further, the team found this increase in two species of microalgae via two different and species-dependent mechanisms.

The Impact
By fixing carbon, tiny algae can potentially produce renewable fuels reliably and affordably. But first they need to work better. This study shows that to improve algae’s performance in producing energy, scientists need to consider the ubiquitous microbes, including bacteria, that intimately associate with algal cells on the microscopic scale.

The researchers observed mutualistic interactions between heterotrophic bacteria and two species of biofuels-relevant microalgae, Nannochloropsis salina and Phaeodactylum tricornutum, mediated by physical association between individual cells. At the bulk scale, microalgae in these co-cultures exhibited enhanced growth and yield. At the microscale, the researchers used the Lawrence Livermore National Laboratory nanoscale secondary ion mass spectrometry to observe that both species exhibited enhanced carbon fixation in response to the presence of the microbiomes, but there were divergent responses by each species to bacterial attachment. The research illustrates how P. tricornutum may be predisposed to interact mutualistically with bacteria via attachment, but N. salina does not share these traits. Attached bacteria benefit from these relationships by receiving more reduced carbon from their algal host compared to free living cells. Through the selection of bacteria that positively impact algal physiology, this work highlights one approach to ecologically engineer microbiomes conferring growth benefits to the algal host, potentially paving the way to cheaper, reliably produced, and renewable algae-based fuels and products.

Program Manager
Dawn Adin
DOE Office of Biological and Environmental Research, Biological Systems Science Division

Xavier Mayali
Lawrence Livermore National Laboratory

Rhona Stuart
Lawrence Livermore National Laboratory

The Department of Energy, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division, Genomic Sciences Program funded this research.

T.J. Samo, J.A. Kimbrel, D.J. Nilson, J. Pett-Ridge, P.K. Weber, and X. Mayali, “Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions.” Environmental Microbiology (2018). [DOI: 10.1111/1462-2920.14357]

Related Links
Lawrence Livermore National Laboratory: Biofuels Scientific Focus Area

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Microbes and Communities
  • Research Area: Biosystems Design
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)