U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Microbes Eat the Same in Labs and the Desert
Published: November 09, 2018
Posted: January 24, 2019

Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.

The Science
Far from barren, arid lands host diverse communities of bacteria and other microbes. The biocrust these communities form affects local and global resources. The residents of these communities are dormant through long, dry spells, but are active when it rains. While it’s obvious that the community consumes more when it’s active, scientists need more details. Previous research used simplified tests to identify which community members thrived and which didn’t during wet and dry seasons. Now, a team examined microbes in their more complex native setting. They found the same patterns.

The Impact
This study sheds new light on the microbial communities that make up the biocrust. While that might seem like a small detail, 40 percent of the world’s land is arid. These communities affect the soil chemistry. That chemistry affects water availability, soil fertility, and the movement of nutrients and energy. This study gets us closer to understanding the complex microbial food webs and their impact on the global carbon cycle.

Scientists can determine the structure and metabolic potential of microbial communities by established metagenomic approaches. However, linking microbial species data to exogenous metabolites that microbes process and produce (the exometabolome) is still a challenge. A group of scientists at Lawrence Berkeley National Laboratory examined microbe-metabolite relationships in native biological arid soil crusts (biocrusts) upon changes in water availability. The water levels are a critical factor affecting metabolic activity in these ecosystems. The researchers discovered that those relationships are consistent with previous laboratory tests using bacterial isolates from the same ecosystems. Overall, most soil metabolites displayed the expected correlation with four dominant bacteria over time, after it rained. The results show that scientists can successfully combine metabolite profiling, shotgun sequencing, and exometabolomics to link microbial community structure with environmental chemistry. Such research techniques can shed light on biological carbon cycling processes in arid environments.

Program Manager
Pablo Rabinowicz
Office of Biological and Environmental Research, Office of Science, Department of Energy 

Principal Investigator
Trent Northen
Lawrence Berkeley National Laboratory

The Office of Science Early Career Research Program, Office of Biological and Environmental Research, Office of Science, Department of Energy funded this research. DNA was sequenced using the Vincent J. Coates Genomics Sequencing Laboratory at the University of California, Berkeley, supported by a grant from the National Institutes of Health.

T.L. Swenson, U. Karaoz, J.M. Swenson, B.P. Bowen, and T.R. Northen, “Linking soil biology and chemistry in biological soil crust using isolate exometabolomics.” Nature Communications 9, 19 (2018). [DOI: 10.1038/s41467-017-02356-9]

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Cross-Cutting: Early Career

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)