BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Secret Lives of Cells
Published: March 14, 2018
Posted: January 24, 2019

Supercomputer simulations predict how E. coli adapts to environmental stresses.

The Science
Warmer temperatures can alter a cell’s protein structure. Researchers developed a systems-level computational model, FoldME, that can accurately predict how E. coli responds to temperature changes and genetic mutations. The model can also predict how the bacterium then reallocates its resources to stabilize proteins. This study, led by the University of California, San Diego, used supercomputers to run large-scale simulations. The computing services let the team run calculations in parallel for hundreds of proteins. The computer sped up what would otherwise have been weeklong simulations.

The Impact
To have full control over living cells, scientists need to understand the fundamental mechanisms by which they survive and quickly adapt to changing environments. FoldME could aid in designing engineered organisms. These organisms could have use in biofuel production and patient-specific treatments for bacterial infections.

Summary
This work and the FoldME model provide a comprehensive, genome-scale understanding of how cells adapt under environmental stress, with statistical descriptions of multiscale cellular responses consistent with numerous datasets. Using first principles calculations and computational resources at the National Energy Research Scientific Computing Center allowed the researchers to gain a deep understanding of how multiple protein folding events and other intracellular reactions all work together to enable the cell to respond to environmental and genetic stresses. These findings have implications for precision medicine, where adaptive cell modeling could provide patient-specific treatments for bacterial infections, and for biofuel production.

Contact

BER Program Managers
Pablo Rabinowicz
Biological Systems Science Division
Office of Science
Department of Energy
pablo.rabinowicz@science.doe.gov

Ramana Madupu
Biological Systems Science Division
Office of Science
Department of Energy
ramana.madupu@science.doe.gov

Principal Investigator
Bernhard Palsson
University of California, San Diego
palsson@ucsd.edu  

Funding
This work was funded by National Institutes of Health grants and the Novo Nordisk Foundation. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy (DOE) Office of Science user facility. Allocation of computer time at NERSC was awarded by the DOE Office of Science, Office of Biological and Environmental Research, Biological Sciences Division.

Publications
K. Chen, Y. Gao, N. Mih, E.J. O’Brien, L. Yang, and B.O. Palsson, “Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation.” Proceedings of the National Academy of Sciences USA 114 (43), 11548 (2017). [DOI: 10.1073/pnas.1705524114]

Related Links
University of California at San Diego Systems Biology Research Group

Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Biosystems Design
  • Research Area: Computational Biology, Bioinformatics, Modeling
  • Cross-Cutting: Scientific Computing and SciDAC

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)