U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Hydrological Emulator for Global Applications
Published: May 12, 2018
Posted: January 02, 2019

New open-source software mimics complex global hydrological models with extraordinary computational efficiency.

The Science
Scientists use global hydrological models and Earth system models to explore future water resource scenarios. The computational requirements for these complex models can be prohibitive. To overcome this challenge, researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory developed an efficient, open-source, ready-to-use hydrological emulator that mimics complex global hydrologic models and Earth system models. In simulations of global runoff, the emulator achieved computational efficiency seven orders of magnitude higher than the widely used Variable Infiltration Capacity (VIC) model.

The Impact
This open-source hydrologic emulator provides researchers with an easy way to examine the variations in future water budgets and hydrologic conditions under numerous scenarios with little effort, reasonable model predictability, and enormous computational gain. The new tool can be used to mimic Earth system models and global hydrological models, and to represent the water supply component in integrated human-Earth system models. It can also support research related to deep uncertainty analysis.

Summary
Modeling hydrologic systems over the entire globe requires considerable computer memory and time. An emulator—a statistical approximation of a simulator—can be used when less detail is needed for the purpose, using fewer computer resources. Its less complex structure also requires fewer inputs, which saves users time. The researchers created an open-source emulator with distributed and lumped schemes, which do and do not, respectively, account for spatial variation within a river basin. Then they used the detailed and commonly used VIC model to simulate global runoff from 1971 to 2010 in the world’s 235 river basins. Results from the emulator were comparable in annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration). The lumped scheme was 100 times more computationally efficient than the distributed scheme, and ten million times more efficient than the detailed VIC model. The lumped scheme is reasonable for broad practical use, and the distributed scheme is an efficient alternative if spatial variation is to be included.

Contacts (BER PM)
Bob Vallario
Multi-Sector Dynamics
Bob.Vallario@science.doe.gov

(PNNL Contact)
Mohamad Hejazi
Pacific Northwest National Laboratory - Joint Global Change Research Institute
Mohamad.Hejazi@pnnl.gov

Funding
The U.S. Department of Energy Office of Science supported this research as part of the Earth and Environmental System Multi-Sector Dynamics Program.

Publication
Liu, Y., M.I. Hejazi, H. Li, X. Zhang, and G. Leng, “A Hydrological Emulator for Global Applications - HE v1.0.0.” Geoscientific Model Development 11, 1077-1092 (2018). [DOI:10.5194/gmd-11-1077-2018]

Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)