U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Controls on Nitrogen Availability in the Arctic Tundra
Published: August 14, 2018
Posted: December 28, 2018

Hydrological changes are key to determining nutrient cycling responses in complex polygonal tundra landscapes.

The Science
The unique aspects of the permafrost environment create new challenges for representing plant-nitrogen interactions in the Arctic tundra. NGEE-Arctic scientists from Oak Ridge National Laboratory measured how nitrogen availability to plants varies spatially and temporally in the arctic tundra in relation to microhabitats and permafrost thaw.

The Impact
Arctic models should not assume that increasing thaw depth with warming of the Arctic will release additional nitrogen to the benefit of plants. Increased production of inorganic nitrogen that is not coupled to plant uptake could lead to nitrogen losses from the system and degradation of the ecosystem.

Nitrogen availability in the Arctic strongly influences plant productivity and distribution, and in permafrost systems with patterned ground, ecosystem carbon and nutrient cycling can vary substantially over short distances. Improved understanding of fine-scale spatial and temporal variation in soil N availability is needed to better predict tundra responses to a warming climate. NGEE-Arctic scientists from Oak Ridge National Laboratory quantified plant-available inorganic nitrogen at multiple soil depths in 12 micro-habitats associated with a gradient from low-center ice-wedge polygons to high-center polygons in coastal tundra at Utqiagvik (formerly Barrow), Alaska.  They measured vegetation composition, biomass, N content, and rooting depth distribution, as well as soil temperature, moisture, pH, and thaw depth to determine relationships between the spatial and temporal variability in N availability and environmental and vegetation drivers. Soil moisture variability across the complex polygonal terrain of the Barrow Environmental Observatory was the primary determinant of nitrogen availability. Drier habitats had a greater proportion of their nitrogen economy as nitrate rather than ammonium, but the plant species present could not exploit this resource. Nitrogen availability increased as the soil thawed during the summer, but the newly available nitrogen near the permafrost boundary late in the growing season was not available to roots. The strong relationship between soil moisture, inorganic N availability, and plant N content implies that understanding hydrological changes that may occur in a warming climate is key to determining nutrient cycling responses in complex polygonal tundra landscapes.

Contacts (BER PM)
Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Richard J. Norby, Environmental Science Division and Climate Change Science Institute, Oak Ridge National Laboratory

This work was funded by the Next-Generation Ecosystem Experiment (NGEE-Arctic) project. The NGEE Arctic project is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Norby, RJ, VL Sloan, CM Iversen, and J Childs. “Controls on fine-scale spatial and temporal variability of plant-available inorganic nitrogen in a polygonal tundra landscape.” Ecosystems (2018). [DOI:10.1007/s10021-018-0285-6]

Related Links
The datasets presented in this manuscript are available and can be accessed at http://dx.doi.org/10.5440/1129476,
and https://dx.doi.org/10.5440/1375316.
Next-Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23 BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)