U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Simulating the Spatial Variation of Carbon Processes at a Critical Zone Observatory
Published: June 02, 2018
Posted: December 27, 2018

Development and testing of a spatially-distributed land surface hydrologic biogeochemistry model with nitrogen transport.

The Science
A distributed land surface hydrologic biogeochemistry model with nitrogen transport processes is developed and tested at the Shale Hills watershed. The model is able to represent the spatial variations in terrestrial carbon processes and suggests that tree growth at the Shale Hills watershed is nitrogen limited.

The Impact
The coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.

A spatially distributed land surface hydrologic biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by scientists at Penn State University, by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed, although the model underestimates the spatial variability. Model results suggest that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.

Contacts (BER PM)
Daniel Stover

(PI Contact)
David Eissenstat
The Pennsylvania State University
dme9@psu.edu   (814)863-3371

This work is supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research, under Award Number DE-SC0012003, and facilitated by NSF Critical Zone Observatory program grants to CJD (EAR 07- 25019) and SLB (EAR 12-39285, EAR 13-31726).

Shi, Y., D.M. Eissenstat, Y. He, and D.J. Davis. “Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory.” Ecological Modelling 380, 8-21 (2018). [DOI:10.1016/j.ecolmodel.2018.04.007]

Related Links
Link to the Flux-PIHM-BGC repository


Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science

Division: SC-23 BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science
Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)