U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Assessing the Expansion Potential of Irrigated Land
Published: June 01, 2018
Posted: September 07, 2018

New emulator enables more rigorous assessments of regional and global water, land, energy, and economy interactions.

The Science
Today different regions must meet the growing demand for land - most notably for food and bioenergy crops. Expansion of irrigation can dramatically boost yields but potential expansion is limited by varying regional availability of fresh water. The potential additional irrigable land depends on water availability within a region, and the ability to stretch resources further through expansion of storage capacity and improvements in conveyance and irrigation efficiency. This study develops irrigable land supply functions that emulate a complex global water resource model that includes estimates of water resource availability and the cost of adding storage capacity and improving water-use efficiency.

The Impact
The researchers’ new framework allows for more rigorous integrated analyses of regional and global impacts of water, land, energy and economy interactions. The emulator framework is available to other researchers and can be customized to match regional configurations of various integrated, multisector dynamic models.

Summary
The researchers use data on the value of production on irrigated and rain-fed cropland at an approximately 10-square kilometer grid-cell level and for the 140 regions and eight crop sectors in Version 9 of the Global Trade Analysis Project (GTAP) Data Base. For each crop category, they estimate and compare the dollar value of irrigated and rain-fed crop production using production quantities and prices. To represent the potential of irrigated land areas to expand, the researchers use irrigable land supply curves for 126 water regions globally, based on water availability and the costs of irrigation infrastructure from a detailed water resource model. These curves enable estimates of each region’s ability to adapt to changes in water resources and agriculture demand through improvement in irrigation efficiency and expansion of water storage capacity.

BER PM Contact
Bob Vallario
Multi-Sector Dynamics, Earth and Environmental Systems Modeling
Bob.Vallario@science.doe.gov

PI Contacts
Kirby Ledvina (kledvina@mit.edu) or Niven Winchester (niven@mit.edu)
MIT Joint Program on the Science and Policy of Global Change

Funding
The study was funded by the U.S. Department of Energy (DOE) Office of Science Office of Biological and Environmental Research under the grant DE-FG02-94ER61937 and other government, industry, and foundation sponsors of the MIT Joint Program.

Publication
Ledvina, K., N. Winchester, K. Strzepek, and J.M. Reilly. “New data for representing irrigated agriculture in economy-wide models.” Journal of Global Economic Analysis 3(1), 122-155 (2018). [DOI: 10.21642/JGEA.030103AF]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Sep 18, 2018
Vegetation Demographics in Earth System Models: A Review of Progress and Priorities
An assessment of current approaches to including individual plant dynamics in ESMs and the need for [more...]

Jul 16, 2018
Cold Fronts Depend on the Details
Scientists work out the details of high-resolution regional model simulations of extratropical cold [more...]

Jun 15, 2018
Maximizing Ozone Signals Among Chemical, Meteorological, and Climatological Variability Across Space and Time
Modeling advance enables more efficient and precise estimates of trends in ozone and other pollutant [more...]

Jun 01, 2018
Assessing the Expansion Potential of Irrigated Land
New emulator enables more rigorous assessments of regional and global water, land, energy, and econo [more...]

May 30, 2018
Using Radars to Study Snowfall
An international experiment provides new data on snowfall intensity from ground-based radars. T [more...]