U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Ecological Role of Xylem Refilling in Woody Plants
Published: March 10, 2018
Posted: August 31, 2018

Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs.

The Science
This paper provides insights into how embolism repair may have evolved and describes the anatomical and physiological features that are thought to facilitate this process.  A modeling framework was developed to test alternative hypotheses about if, when, and in what ecosystems rapid embolism repair occurs during droughts and emerges as ecologically important.

The Impact
This paper proposes a new framework that incorporates embolism repair into the ‘hydraulic efficiency-safety’ spectrum.  This paper propose a second framework for advancing functional diversity and mortality functions in dynamic vegetation models by describing how vulnerability curves operate in plants that recover from embolism.

Summary
This paper reviews and synthesizes current research regarding embolism repair of plant xylem during droughts. Two new frameworks are proposed for developing hypotheses about the physiology and ecology of embolism repair.

A hypothesized conceptual framework proposing how embolism refilling may be an additional strategy to the continuum of hydraulic safety and hydraulic efficiency. For example, plants may have low safety, and a high ability to recover from embolism. Note that capacitance, which acts as a buffer against embolism, may be regarded as one aspect of avoidance, representing an additional strategy. The research team hypothesizes that species may be able to refill embolism, particularly if they are high water users. Species may also be high water users and unable to refill embolism, using other drought avoidance/tolerance strategies. Alternatively, species may be able to refill embolism and have conservative hydraulic strategies.

Contacts (BER PM)
Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov

Dorothy Koch
SC-23.1
Dorothy.koch@science.doe.gov

(PI Contact)
Thomas L. Powell
Lawrence Berkeley National Laboratory
tlpowell@lbl.gov

Funding
Funding support was provided in full or in part as follows: MZ by ARC DECRA DE120100518. TK by the Benoziyo Fund for the Advancement of Science; Mr. and Mrs. Norman Reiser, together with the Weizmann Center for New Scientists; and the Edith and Nathan Goldberg Career Development Chair. WRLA by a NOAA Climate and Global Change Postdoctoral fellowship, administered by the University Corporation of Atmospheric Research. JB by the Austrian Science Fund (FWF): M1757-B22 through the Lise Meitner Program. PJH by the University of New Mexico. NKR by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association and its research programme ATMO and by the German Research Foundation through its Emmy Noether Programme (RU 1657/2-1). TLP by student research funding from the OEB department at Harvard University and by the Office of Biological and Environmental Research, US Department of Energy, NGEE Tropics project. GvA by the Swiss State Secretariat for Education, Research and Innovation SERI (SBFI C14.0104 and C12.0100).  W.R.L.A. acknowledges funding from NSF 1714972 and from the USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agroecosystem Management, grant no. 2017-05521

Publications
Klein, T., M.J.B. Zeppel, W.R.L. Anderegg, J. Bloemen, M.G. De Kauwe, P. Hudson, N.K. Ruehr, T.L. Powell, G. von Arx, and A. Nardini. “Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs.” Ecological Research. (2018).  [DOI: 10.1007/s11284-018-1588-y]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)