U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Quantifying the Indirect Impacts of Climate on Agriculture: An Inter-Method Comparison
Published: October 27, 2017
Posted: July 30, 2018

Capturing socio-economic feedbacks is critical to a comprehensive assessment of the impacts of climate change on agriculture.

The Science
Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, researchers attempt to measure the importance of these interaction effects through an inter-method comparison between process models, statistical models, and integrated assessment models (IAMs).

The Impact
The results demonstrate the important role of IAMs in climate change impact studies, and highlight the challenges that a modeler must face when attempting to couple yield impacts from crop or statistical models into an IAM. Issues related to differences in spatial, temporal, and sectoral resolution; and differences in base year data between crop and statistical models and IAMs must be addressed.

Researchers assessed the differences between process-based crop models, statistical crop models, and IAMs in their estimates of climate change impacts on agriculture. They find that IAMs show fewer negative effects than process-based and statistical crop models due to the inclusion of factors such as technological change, input substitution, and crop switching. They find the effect of these additional factors to be large, with the additional impact on yields ranging from 20%-40%. Some of these increases are due to the inclusion of technological change, a factor present in simulations both with and without climate change. Other factors (e.g., input substitution and crop switching) are induced by the inclusion of climate effects. The effect of these dynamics range from -12% to +15%.


Bob Vallario
Multisector Dynamics Research

(PI Contact)

John Weyant
Stanford University


This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Multisector Dynamics Research activity, Grant no. DE-SC0005171.


Calvin, K. and K. Fisher-Vanden. “Quantifying the indirect impacts of climate on agriculture: an inter-method comparison.” Environmental Research Letters 12(11), 115004 (2017). [DOI: 10.1088/1748-9326/aa843c]

Related Links
Supplementary material

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)