BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Use of Panel Models in Assessments of Climate Impacts on Agriculture
Published: July 01, 2017
Posted: July 30, 2018

Modern statistical studies have benefited from large samples of observations. Recent advances in statistical regression take advantage of fine-scaled weather data in both time and space.  We discuss how panel models can use time-space dimensions in predicting agricultural outcomes.

The Science
There is a growing literature on the effects of changing climate conditions on various sectors of the economy. Agriculture is one of the sectors that is most susceptible to changes in climate since most farmland is directly exposed to changing weather conditions. Scientific studies examining how weather affects plant growth and agricultural output have a long history. Agronomists have studied the biophysical mechanism between crop growth and various inputs, including weather. In 2010, the Agricultural Model Intercomparison and Improvement Project (AgMIP) was launched with the aim of creating comparable model outputs of various biophysical models by running them with comparable input assumptions. Statistical studies linking agricultural outcomes to weather have a long history of their own — we discuss one approach: panel studies.

The Impact
The main strength of a panel model is that it allows for the identification of a causal relationship. As emphasized by many statisticians, correlation does not imply causation. To show how panel models are able to uncover a causal relationship, we discuss how fixed effects overcome the omitted variable problem by relying on exogenous weather shocks. Due to the short-term nature of the weather shocks, panel models include short-term adaptation. These deviations are random and exogenous, which means that unlike average weather, they are uncorrelated with other production inputs (land allocation, capital inputs, etc.) that are chosen before the weather is observed. This means that the omission of these other production inputs will not bias the coefficients on the weather variables.

Summary
One of the assumptions underlying panel models is that the responsiveness to fluctuations in the exogenous variables is the same for all entities (location or group). This translates into assuming that weather shocks (deviations from the mean) have the same effects in all places. This assumption can be tested by allowing for heterogeneity in the response function through an interaction term. In fact, some studies have tested whether the response function is the same for countries with favorable versus unfavorable farming conditions. 

Farmers do adapt to new climate conditions and there is an emerging literature using panel models to estimate this adaptation. We describe ways to use nonlinear specifications in panel models to estimate costly adaptation measures that involve growing different varieties of the same crop, for example, short-season versus long-season corn. Then we examine adaption through switching between crops.

Contacts
(BER PM)

Bob Vallario
Multisector Dynamics Research
Bob.Vallario@science.doe.gov

(PI Contact)
Wolfram Schlenker
Columbia University
wolfram.schlenker@columbia.edu

Funding
This work was supported by the US Department of Energy, Office of Science, Biological and Environmental Research Program, Multisector Dynamics activity, Grant No. DE-SC0005171.

Publications
Blanc, E. and W. Schlenker. “The Use of Panel Models in Assessments of Climate Impacts on Agriculture.” Review of Environmental Economics and Policy, 11(2): 258-279 (2017). [DOI: 10.1093/reep/rex016]

Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)