U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Tethys Tackles Downscaling Challenge for Regional Water Withdrawals
Published: February 09, 2018
Posted: July 30, 2018

A new open-source tool helps connect high-resolution sectoral models and broader integrated human-Earth system models.

The Science
Downscaling of water withdrawals is a fundamental step when integrating large-scale complex human-Earth models with detailed sectoral models. Researchers at the U.S. Department of Energy’s Pacific Northwest National Laboratory and the University of Maryland, College Park, developed Tethys, an open-access software package that applies statistical algorithms to spatially and temporally downscaled water withdrawal data.

The Impact
Tethys bridges the gap between coarser integrated human-Earth system model projections and detailed sectoral models that require high-resolution water withdrawal projections in space and time. The ability to exchange water withdrawal information when coupling models of different scales is especially important to inform local and regional water resource projections and planning.

Summary
Researchers developed Tethys to produce monthly, gridded global water withdrawal data products based on estimates from the Global Change Assessment Model (GCAM), an integrated human-Earth system model. GCAM is often coupled to sectoral models that typically operate at finer scales, and mismatches across time and space can occur. Tethys eliminates such mismatches by using statistical algorithms to downscale global water withdrawal data. Researchers first separated water withdrawals into six common high-volume water-use sectors: irrigation, livestock, domestic, electricity generation, manufacturing, and mining. They then derived downscaling algorithms parameterized using collected data products and applied them to the various sectors. These algorithms downscaled the spatial resolution from region/basin scale to grid (0.5 geographic degree) scale and the time resolution from year to month.

Contacts
(BER PM)

Bob Vallario
Multisector Dynamics Research
Bob.Vallario@science.doe.gov

(PNNL Contact)
Mohamad Hejazi
Pacific Northwest National Laboratory
Mohamad.Hejazi@pnnl.gov

Funding
The U.S. Department of Energy Office of Science supported this research through the Multi-Sector Dynamics, Earth and Environmental System Modeling Program.

Publication
Li, X., C.R. Vernon, M.I. Hejazi, R.P. Link, Z. Huang, L. Liu, L. Feng. “Tethys — A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals.” Journal of Open Research Software 6(1), 9 (2018). [DOI: 10.5334/jors.197]

Related Links
Journal Article
https://github.com/JGCRI/tethys

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)