U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Spring Snowmelt Drives Transport and Degradation of Dissolved Organic Matter in a Semi-Arid Floodplain
Published: December 29, 2016
Posted: July 26, 2018

Findings provide scientific understanding of how hydrologic processes impact biogeochemical processes and cycling in watersheds.

The Science
Berkeley Lab geochemists and hydrologists who study a mountainous watershed near Rifle, CO, discovered that spring snowmelt is essential to the transport of freshly dissolved organic matter (DOM) from the top soil to the part of the Earth’s subsurface that lies above the groundwater table. Because dissolved organic matter undergoes biological humification over the year, these processes involving this deep vadose zone suggest an annual cycle of DOM degradation and transport at this semi-arid floodplain site.

The Impact
Characterizing the dynamics of dissolved organic matter in semi-arid regions of Earth’s subsurface is challenging. The authors obtained insights into transport and humification processes of DOM using several spectroscopic techniques on depth- and temporally-distributed pore-waters. This methodology can be applied to other subsurface environments for understanding DOM responses and feedbacks to earth system processes.

Scientists studying DOM in surface waters considered it to be the mobile fraction of natural organic matter that falls into or is washed into water bodies. Although it has been extensively studied over many decades, relatively little is known about the dynamics of DOM in the subsurface of semi-arid environments. In order to understand transport and humification processes of DOM within a semi-arid floodplain at Rifle, Colorado, the authors applied fluorescence excitation-emission matrix (EEM) spectroscopy, humification index (HIX) and specific UV absorbance (SUVA) for characterizing depth and seasonal variations of DOM composition. They found that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone (VZ). More humified DOM is preferentially adsorbed by upper VZ sediments, while non- or less-humified DOM was transported into the deeper VZ.  Interestingly, DOM at all depths undergoes rapid biological humification processes as evidenced by the products of microbial by-product-like matter in late spring and early summer, particularly in the deeper VZ, resulting in more humified DOM at the end of year. The finding indicates that DOM transport is dominated by spring snowmelt, and DOM humification is controlled by microbial degradation. It is expected that these relatively simple spectroscopic measurements (e.g., EEM spectroscopy, HIX and SUVA) applied to depth- and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.

BER PM Contact
David Lesmes, SC-23.1, David.Lesmes@science.doe.gov

Susan Hubbard, Lawrence Berkeley National Laboratory, sshubbard@lbl.gov

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Dong, W., J. Wan, T. K. Tokunaga, B. Gilbert, and K. H. Williams. “Transport and Humification of Dissolved Organic Matter within a Semi-Arid Floodplain.” Journal of Environmental Sciences (China) 57, 24-32 (2017). [DOI: 10.1016/j.jes.2016.12.011]

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)