U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Scientific Challenges and Opportunities for Remediating Radioactive Waste
Published: December 07, 2017
Posted: June 26, 2018

Scientists outline approaches for using specialized instruments and modeling to study ways to manage radioactive waste in Hanford Site tanks.

The Science
One of the nation’s enduring scientific challenges has been to find effective ways of remediating millions of gallons of chemical and radioactive waste remaining from Cold War activities. Now a team of experts has combed through more than 100 studies to determine what is known of the complex chemical and rheological aspects of the waste and identify scientific issues that must be resolved to finally reach the end goal of cleanup.

The Impact
Scientists and engineers have worked for decades to find solutions, particularly for chemical and radioactive waste in underground storage tanks at the Hanford Site in southeast Washington State. While the origins of the waste have been well documented, tank-to-tank transfers, mixing, and previous remediation attempts have complicated the chemistry and physics of the material. A thorough understanding of underlying scientific issues provides a stronger foundation for engineering solutions, giving decision makers more confidence to move forward with fewer delays.

Summary
Scientists from the Pacific Northwest National Laboratory, cleanup contractor Washington River Protection Solutions, and Washington State University scoured scientific literature to identify research that has informed current understanding of tank waste. Much has been accomplished, including beginning the construction of a vitrification plant to solidify this waste for safe storage. Perhaps the greatest remaining challenge is to develop the scientific underpinnings of the complex particle interactions that will occur when waste is removed from the tanks and pumped through pipes for further treatment and vitrification. Previous work at EMSL, the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy user facility, helped develop an empirical model of the materials inside the tanks, but more work is needed to predict how the waste will behave during processing. Recent advances in aberration-corrected transmission electron microscopy, in situ microscopy, and theoretical modeling across scales show promise. Information from such studies, coupled with the ability to transport radioactive materials to EMSL and use its atom probe tomography, could allow scientists to build robust predictive physics-based models to inform and guide cleanup efforts.

BER PM Contact
Paul Bayer, SC-23.1

PI Contact
Reid Peterson
Pacific Northwest National Laboratory
Reid.Peterson@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science user facility. The Nuclear Processing Science Initiative, a Laboratory-Directed Research and Development program investment of the Pacific Northwest National Laboratory, also provided support.

Publication
Peterson, R.A., E.C. Buck, J. Chun, R.C. Daniel, D.L. Herting, E.S. Ilton, G.J. Lumetta, and S.B. Clark, “Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.” Environmental Science and Technology 52(2): 381-396 (2018). [DOI:10.1021/acs.est.7b04077]

Related Links
Scientific Challenges and Opportunities for Remediating Radioactive Waste on EMSL’s web site.

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Legacy: Radiochemistry and Instrumentation

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)