U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


An Effective-Medium-Based Model for P-Wave Velocities of Saturated, Unconsolidated Saline Permafrost
Published: August 29, 2017
Posted: June 22, 2018

A new rock physics model provides superb fits to experiment data and important insights on pore-scale distributions of ice in saline permafrost.

The Science
The NGEE-Arctic team developed an effective-medium-based rock physics model for inferring ice content of saline permafrost from seismic P-wave velocities. Unlike many existing models that either only consider a single type of pore-scale ice distribution or rely on many tuning parameters to accounting for multiple ice distributions, our model only requires one free parameter to achieve superb data fits.

The Impact
The model provides important insights on pore-scale distributions of ice in saturated, unconsolidated saline permafrost. The modeling workflow is not only useful for permafrost, but also applicable to hydrate-bearing sediments. Their approach could also be generalizable to modeling cementation processes where both pore filling and contact cementing materials coexist in the pore space.

Summary
To better understand the relationship between P-wave velocities and ice content in saturated, unconsolidated saline permafrost, we constructed an effective-medium model based upon ultrasonic P-wave data that were obtained from earlier laboratory studies. The model uses a two-end-member mixing approach in which an ice-filled, fully frozen end member and a water-filled, fully unfrozen end member are mixed together to form the effective medium of partially frozen sediments. This mixing approach has two key advantages: (1) It does not require parameter tuning of the mixing ratios, and (2) it inherently assumes mixed pore-scale distributions of ice that consist of frame-strengthening (i.e., cementing and/or load-bearing) ice and pore-filling ice. The model-predicted P-wave velocities agree well with our laboratory data, demonstrating the effectiveness of the model for quantitatively inferring ice content from P-wave velocities. The modeling workflow is simple and is largely free of calibration parameters — attributes that ease its application in interpreting field data sets.

Contacts (BER PM)
Dan Stover
SC-23.1
Daniel.stover@science.doe.gov301-903-0289)

(PI Contact)
Jonathan Ajo-Franklin
Lawrence Berkeley National Laboratory
JBAjo-Franklin@lbl.gov

Funding
As part of the Next-Generation Ecosystem Experiments (NGEE-Arctic) project sponsored by the Office of Biological and Environmental Research in the DOE Office of Science, this study is supported through contract DEAC0205CH11231 to the Lawrence Berkeley National Laboratory and through contract DE-AC05-00OR22725 to the Oak Ridge National Laboratory.

Publications
Dou, Shan, Seiji Nakagawa, Douglas Dreger, and Jonathan Ajo-Franklin. ”An effective-medium model for P-wave velocities of saturated, unconsolidated saline permafrost.” Geophysics 82(3) P. EN33-EN50 (2017). [DOI:10.1190/geo2016-0474.1]

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)