U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Optimal Foraging: How Soil Microbes Adapt to Nutrient Constraints
Published: January 22, 2018
Posted: April 17, 2018

Scientists are studying how microbes in soil use nutrients like phosphorus at the molecular level, helping better model efficient land use and terrestrial processes.

Understanding how microbial communities adjust to nutrient-poor soils at the genomic and proteomic level gives scientists insights into land use and terrestrial biosphere modeling.

The Science
The vital growth nutrient, phosphorus, is scarce in many tropical ecosystems, yet microbes in tropical soils thrive. New research from a team of scientists has now revealed at the genomic and proteomic level how these microbes acquire rare nutrients.

The Impact
This study provides insights into soil microbial communities and how they adapt to different levels of nutrients available in a tropical rainforest. Significant changes in metabolic capabilities, shifts in community structure, and regulation of enzyme abundances revealed how soil microbes adapt to limited nutrients in tropical soils. These findings could have important implications for enhancing agricultural crops and for modeling terrestrial processes and elemental cycles.

A team of scientists set out to determine whether the theory of optimal foraging, which suggests any ecological community will adjust its consumption strategy to balance the distribution of the life-sustaining elements, applied to microorganisms in soils. While the theory had been applied to plants and animals, which can be easily observed, it is more difficult to apply to tiny, unseen microbes. Scientists from Oak Ridge National Laboratory and The University of Tennessee, Knoxville gathered samples from a 17-year fertilization experiment of the Smithsonian Tropical Research Institute in Panama. Samples included phosphorus-rich and phosphorus-deficient soil. The advanced Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer at the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy (DOE) Office of Science User Facility, provided the team with spectra that enabled the scientists to look at samples containing soil organic matter in ways that enabled them to understand what organic compounds were available to the microbes. The Joint Genome Institute (JGI), also a DOE Office of Science User Facility, helped team members probe microbial genes in the samples, and the scientists used mass spectrometers at Oak Ridge National Laboratory to identify more than 7,000 proteins in each soil sample. What the researchers found closely matched their theories. The microbes in the two types of soils used different foraging strategies and adjusted their allocation of different genes and proteins to make the most of the scarce phosphorus resources in their environment. Scientists also identified differences in genes associated with the use of carbon, nitrogen, and sulfur. These results could help scientists understand how to better model microbial communities, plan for optimal land use, and predict changes in the earth system.

BER PM Contact
Paul Bayer,
Subsurface Biogeochemical Research
SC-23.1, 301-903-5324

PI Contact
Chongle Pan
Oak Ridge National Laboratory

This work was supported by the U.S. Department of Energy’s Office of Science, Office of Biological and Environmental Research, including support of the Environmental Molecular Sciences Laboratory (EMSL) and the Joint Genome Institute (JGI), both DOE Office of Science user facilities, and Laboratory Directed Research and Development funding from Oak Ridge National Laboratory.

Qiuming, Y., L. Zhou, Y. Song, S.J. Wright, X. Guo, S.G. Tringe, M.M. Tfaily, L. Pasa-Tolic, T.C. Hazen, B.L. Turner, M.A. Mayes, and C. Pan, “Community Proteogenomics Reveals the Systemic Impact of Phosphorus Availability on Microbial Functions in Tropical Soil.”  Nature Ecology and Evolution 2,499-509 (2018). [DOI:10.1038/s41559-017-0463-5]

Related Links
Optimal Foraging:  How Soil Microbes Adapt to Nutrient Constraints on EMSL’s website.
Researchers reveal how microbes cope in phosphorus-deficient tropical soil Oak Ridge National Laboratory news release

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)
  • Cross-Cutting: Scientific Computing and SciDAC
  • Cross-Cutting: Early Career

Division: SC-23 BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)