U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights
Subsurface Biogeochemical Research Program


Microbial “Hotspots” and Organic Rich Sediments are Key Determinants of Nitrogen Cycling in a Floodplain
Published: December 28, 2017
Posted: April 10, 2018


Sediments from a Colorado River floodplain that are rich in organic matter have a 70% higher potential for nitrate removal than background sediments.

The Science
Biogeochemical hot spots are regions with disproportionally high reaction rates relative to the surrounding spatial locations, while hot moments are short periods of time manifesting high reaction rates relative to longer intervening time periods. These hot spots and hot moments together affect ecosystem processes and are considered ‘‘ecosystem control points”. However, relatively few studies have incorporated hot spots and/or hot moments in numerical models to quantify their aggregated effects on biogeochemical processes at floodplain and riverine scales. This study quantifies the occurrence and distribution of nitrogen hot spots and hot moments at a Colorado River floodplain site in Rifle, CO, using a high-resolution, 3-D flow and reactive transport model. 

The Impact
This study was used to assess the interplay between dynamic hydrologic processes and organic matter rich, geochemically reduced sediments (aka “naturally reduced zones”) within the Rifle floodplain and the impact of hot spots and hot moments on nitrogen cycling at the site using a fully-coupled, high-resolution reactive flow and transport simulator. Simulation results indicated that nitrogen hot spots are not simply hydrologically-driven, but occur because of complex fluid mixing, localized reduced zones, and biogeochemical variability. Furthermore, results indicated that chemically reduced sediments of the Rifle floodplain have 70% greater potential for nitrate removal than non-reduced zones.

Summary
Although hot spots and hot moments are important for understanding large-scale coupled carbon and nitrogen cycling, relatively few studies have incorporated hot spots and hot moments in numerical models, especially not in a 3D framework, thereby neglecting the potential effects of fluid mixing on the biogeochemistry. In this study, scientists from the Lawrence Berkeley National Laboratory integrated a complex biotic and abiotic reaction network into a high-resolution, three-dimensional subsurface reactive transport model to understand key processes that produce hot spots and hot moments of nitrogen in a floodplain environment. The model was able to capture the significant hydrological and biogeochemical variability observed across the Rifle floodplain site. In particular, simulation results demonstrated that hot and cold moments of nitrogen did not coincide in different wells, in contrast to flow hydrographs. This has important implications for identifying nitrogen hot moments at other contaminated sites and/or mitigating risks associated with the persistence of nitrate in groundwater. Model simulations further demonstrated that nitrogen hot spots are both flow-related and microbially-driven in the Rifle floodplain. Sensitivity analyses results indicated that the naturally reduced zones (NRZs) have a higher potential for nitrate removal than the non-NRZs for identical hydrological conditions. However, flow reversal leads to a reduction in nitrate removal (approximately 95% lower) in non-NRZs whereas the NRZ remains unaffected by the influx of the river water. This study demonstrates that chemolithoautotrophy, the microbial processes responsible for Fe+2 and S-2 oxidation, is primarily responsible for the removal of nitrate in the Rifle floodplain.

Contact (BER PM)
David Lesmes, SC-23.1, 301-903-2977, David.Lesmes@science.doe.gov

(PI Contact)
Susan S. Hubbard
Lawrence Berkeley National Lab
sshubbard@lbl.gov

Funding
DE-AC02-05CH11231, as part of the Genomes to Watershed Scientific Focus Area project and DE-SC0009732, as part of the Small Business Innovation Research.

Publications
Dwivedi, D., B. Arora, C.I. Steefel, B. Dafflon, and R. Versteeg. “Hot spots and hot moments of nitrogen in a riparian corridor.” Water Resources Research, 54, 205-222 (2018). DOI: 10.1002/2017WR022346.

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. Search all BER Highlights

Recent SBR Highlights

Jan 07, 2019
Effects of Water Flow Variation in Large Rivers Exacerbated by Drought
Model shows frequent fluctuation in river flows, caused by dam operations, lead to greater changes [more...]

Oct 29, 2018
Influence of Hydrological Perturbations and Riverbed Sediment Characteristics on Hyporheic Zone Respiration of CO2 and N2
Hyporheic Controls on Greenhouse Gas Production. The Science In this work we advanc [more...]

Oct 01, 2018
Geochemical Exports to River from the Intra-Meander Hyporheic Zone under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado
Meanders of the East River act as a sink of nutrients and metals during high-water and extended ba [more...]

Sep 25, 2018
Rarely Studied Microbes Associated With Production of Toxic Methylmercury in Great Lakes Estuary
New paper lays foundation for future studies of the role of understudied microorganisms in methylm [more...]

Sep 04, 2018
Unexpected High Carbon Fluxes from the Deep Unsaturated Zone in a Semi-Arid Region
The Science Understanding of terrestrial carbon cycling has relied primarily on studies o [more...]

List all highlights (possible long download time)