U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Analysis Yields Missing Pieces in Modeling the Global Carbon Cycle
Published: December 01, 2017
Posted: April 10, 2018

Scientists identified key environmental factors and hydrological processes important for modeling sediment yield and particulate organic carbon yield in Earth system models.

The Science
Sediment from soil erosion is ubiquitous, and its environmental impacts, such as reduced nutrients and water quality and increased flooding, are well known. However, the impacts of sediment yield on the global carbon cycle remain largely uncertain because Earth system models lack a representation of soil erosion. Led by scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory, a recent study identified the key environmental factors and hydrological processes that dominate sediment yield and particulate organic carbon yield in different environments around the world. These factors and processes include agriculture, seismicity, heavy storms, and annual peak runoff.

The Impact
Recent studies refuted the traditional view that aquatic ecosystems play a passive role in the global carbon cycle as a "pipe" to transport organic carbon from land to oceans. Increasingly, observational evidence suggests that a considerable fraction of carbon in the aquatic ecosystems is biogeochemically modified on its journey to the oceans. Therefore, estimating the magnitude and timing of carbon fluxes from land to rivers is critical for understanding how the carbon cycle responds to perturbations. This research establishes the foundation for representing sediment yield, a major source of riverine carbon, in Earth system models.

Summary
Sediment yield is a process that involves soil erosion, sediment transport, and deposition. It is defined by the amount of sediment per unit basin area reaching a river basin outlet during a given period. In riverine biogeochemistry, this is important because the particulate organic carbon yield—the amount of particulate organic carbon detached in erosion and sediment transport—could be as much as 13.5 percent of the global total produced by terrestrial ecosystems. However, neither sediment yield nor particulate organic carbon yield are represented in most Earth system models because soil erosion and sediment transport processes vary greatly across space and time. Also, existing sediment yield models cannot capture the global variability of sediment yield at scales resolvable by Earth system models.
To remedy this situation, scientists analyzed worldwide sediment yield and organic carbon yield data from 1,081 and 38 catchments, respectively, in the size range of 0.1-200 km2. They identified robust relationships between sediment yield and seismicity, land forest cover, and land management. They also found high sediment yield in areas with intense traditional agriculture, seismicity, heavy storms, and high annual peak runoff. These findings highlight the need to model sediment yield at event scales to reproduce catastrophic mass transport during episodic events and the importance of accounting for cropland management. Analyses also revealed that sediment yield dominates the variability of particulate organic carbon yield in small catchments. This study establishes a statistically significant empirical relationship between sediment yield and particulate organic carbon yield as a starting point for representing particulate organic carbon in Earth system models.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling
Dorothy.Koch@science.doe.gov

(PI Contact)
L. Ruby Leung
Pacific Northwest National Laboratory
Ruby.Leung@pnnl.gov

Funding
The U.S. Department of Energy Office of Science, Biological and Environmental Research supported this study as part of the Earth System Modeling program through the Energy Exascale Earth System Modeling (E3SM) project. The German Science Foundation DFG supported J.H.

Publication
Tan, Z., L.R. Leung, H. Li, T. Tesfa, M. Vanmaercke, J. Poesen, X. Zhang, H. Lu, J. Hartmann, "A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models." Water Resources Research 53,10674-10700 (2017). [DOI: 10.1002/2017WR020806]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)