U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Discrete Conservation Properties for Shallow Water Flows using Mixed Mimetic Spectral Elements
Published: December 20, 2017
Posted: April 10, 2018

New methods for simulating fluid dynamics in the atmosphere and ocean.

The Science
This paper explores a new method for the solution of the rotating shallow water equations - a simpler analog often used to test approaches for full general circulation models. This new method exactly preserves conservation properties of the fluid flow with arbitrarily high accuracy and is a strong candidate for use in climate system simulations at long timescales.

The Impact
The conservation and error convergence properties of this new approach make it a strong candidate for modeling geophysical dynamics over long time integrations with high accuracy and minimal bias. In particular, it should be well suited to the modeling of both gravity waves on fast time scales and Rossby waves on slow time scales that are responsible for many aspects of climate and weather dynamics.

To simulate fluid flow on a computer, we must translate the continuous fluid equations into a discrete form that can be calculated on a computational mesh covering the sphere. Mimetic methods are a technical term for a discrete formulation that can exactly capture properties of the continuous mathematical equations. Spectral element methods are a choice of discrete model that uses a series of carefully chosen mathematical functions, called basis functions, to provide a locally accurate approximation to the solution in each mesh cell (element). In this work, mimetic and spectral element approaches are combined and applied to a set of simpler fluid equations known as a shallow water model. The combined mixed mimetic spectral element method introduces a set of recently developed basis functions for the spectral element approach that exactly satisfy properties of the underlying mathematical operators (i.e., mimetic). This allows for the exact conservation of both simpler quantities (e.g., mass) as well as higher moments like energy or enstrophy, subject to the truncation error of the time stepping scheme. The combination of very high accuracy associated with spectral element methods and the preservation of conservation properties needed to represent the Earth system in long timescale simulations appears to provide a much improved method for solving the fluid equations for use in large-scale Earth system models. This work has provided an initial implementation of these idea and has demonstrated much improved results. Future work will integrate these schemes in the full dynamical cores of Earth system models.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling

(PI Contact)
Phil Jones
Los Alamos National Laboratory

Funding was provided by the Earth System Modeling program within the DOE Office of Science Office of Biological and Environmental Research.

Lee, D., A. Palha, and M. Gerritsma. "Discrete conservation properties for shallow water flows using mixed mimetic spectral elements." Journal of Computational Physics 357, 282-304 (2017). [DOI:10.1016/j.jcp.2017.12.022]

Related Links
Launching an Extreme-scale ACME Prototype - Transport (LEAP-T)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)