BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Will High-Resolution Global Ocean Models Benefit Coupled Predictions on Short-Range to Climate Timescales?
Published: December 01, 2017
Posted: April 09, 2018

Benefits of high-resolution ocean models to climate simulation.

The Science
This is a review article of the benefits of the explicit resolution of mesoscale eddies, narrow boundary currents and their frontal structures, and topographic-flow interactions in the ocean components of global coupled models. Based on published, albeit limited results, the emerging consensus is that the realistic representation of these features and processes is important for coupled prediction.

The Impact
Fine resolution coupled models allow for the representation of climate processes and feedbacks on short space scales that are currently missing in standard coupled models. Overall, both ocean and atmospheric circulations are impacted by the presence of explicit mesoscale eddies and well-resolved frontal systems. 

A review of published findings indicates that it is very likely important to explicitly resolve oceanic mesoscale eddies, frontal systems associated with western boundary currents, and topographic-flow interactions in coupled prediction models. In standard climate models, these processes and features are either unrealistically represented or are parameterized, or may even be missing. It was found that explicitly resolved mesoscale eddies reduce subsurface ocean model warming drifts, improving the realism of water masses relative to those in standard models. The energy cycle and meandering state of the Kuroshio Extension in the North Pacific was found to be strongly dependent on mesoscale eddy-atmosphere feedbacks. Accurate simulation of climate system responses in the Southern Ocean was reported to be critically dependent on mesoscale eddies. Mesoscale oceanic eddies impact the atmospheric boundary layer and above, as well as extra-tropical storm tracks. In the Gulf Stream region, storm track biases were reduced and blocking frequencies improved. 

Contacts (BER PM)
Renu Joseph
Regional and Global Climate Modeling

Dorothy Koch
Earth System Modeling

(PI Contact)
Julie L McClean
Scripps Institution of Oceanography

This work is supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy as part of the Earth System Modeling and Regional and Global Climate Modeling programs.

Hewitt, H.T., M.J. Bell, E.P. Chassignet, A. Czaja, D. Ferreira, S.M. Griffies, P. Hyder, J. McClean, A.L. New, and M.J. Roberts, "Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?" Ocean Modelling 120, 120-136 (2018). [DOI:10.1016/j.ocemod.2017.11.002]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)