U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Prognostic Plant Traits
Published: December 01, 2017
Posted: April 09, 2018

Mapping and predicting global plant trait distributions.

The Science
Variation in plant traits at local scales can be very large, of similar magnitude to the global range of values used to characterize mean traits for multiple plant functional types. This study generated global maps of plant trait distributions for use in Earth system models, representing trait means and trait variation in each global grid cell. It used environmental variables to estimate trait distributions so that trait variation under future conditions can be estimated as well.

The Impact
At present, Earth system models (ESMs) represent variation in plant life through the presence of a small set of plant functional types (PFTs), each of which represents hundreds or thousands of species across thousands of vegetated grid cells on land. By expanding plant traits from a single mean value per PFT to a full distribution per PFT that varies among grid cells, the trait variation present in nature is restored and may be propagated to estimates of ecosystem processes. Critical ecosystem processes tend to depend on the full trait distribution, which needs to be represented accurately. The maps reintroduce substantial local variation and permit a more accurate representation of the land surface in ESMs.

The global land surface is perhaps the most heterogeneous component of the Earth system. Reducing vegetation to a collection of plant functional types (PFTs) with fixed trait values has been the preferred method to constrain this heterogeneity and group similar biochemical and biophysical properties; however, this has been at the expense of functional diversity. The study used the largest available global plant traits database and global environmental datasets as observational inputs to a Bayesian prediction framework. It estimated trait distributions (mean and standard deviation) for three leaf traits known to play a critical role in predictions of photosynthesis and respiration: specific leaf area, leaf nitrogen concentration, and leaf phosphorus concentration. The team made global trait distribution estimates both with and without constraints from global maps of plant functional type distribution. This analysis quantifies the substantial magnitude of the previously ignored trait variation. The approach and methods presented here retain the simplicity of the PFT representation, but capture a wider range of functional diversity.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling

(PI Contact)
Ethan Butler
University of Minnesota

This research was supported by multiple agencies in several countries including funding from the Energy Exascale Earth System Model (E3SM) project and the Earth System Modeling program, both funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (Grant DE-SC0012677).

Butler, E.E., A. Datta, et al. "Mapping local and global variability in plant trait distributions." Proc. Nat. Acad. Sci. (2017). [DOI:10.1073/pnas.1708984114]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)