U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


How Shoreline Vegetation Protects Sediment-Bound Carbon
Published: December 20, 2017
Posted: March 07, 2018

A new study investigates the mechanisms and pace of carbon processing at the terrestrial-aquatic interface of a major river corridor.

The Science
Soils and nearshore sediments comprise a reservoir of carbon (C) 3.2 times larger than all the carbon stored in the atmosphere. Terrestrial C (e.g., from falling leaves and roots growing underground) is increasingly transported into aquatic systems due to significant changes in how land is used as the population increases, but little is known about the processing of C along terrestrial-to-aquatic continuums.

A new study led by ecologists Emily Graham and James Stegen at the Pacific Northwest National Laboratory takes a closer look at how C inputs along the terrestrial-aquatic interface change the mechanisms and pace of C processing. Their research also sheds light on how some of the C along shorelines remains in place for millennia.

The Impact
This research provides ultra-high-resolution data to infer new mechanisms of C oxidization along a terrestrial-aquatic boundary. The work will help protect watersheds by providing the underpinnings for a new conceptualization of biogeochemical function within models used to predict how river corridors function.

Summary
A bird's eye view of the Columbia River in southeastern Washington State reveals varied ecological conditions ranging from dense vegetation to dry, rocky shoreline, and this variability leads to disparities in C inputs. In this study, researchers compared the amount of C contained within sediments, the rate of metabolism, and the metabolic pathways associated with C loss in each type of terrain.

Contrary to the prevailing ‘priming' paradigm of C loss in soils, the data indicates that vegetation "protects" the bound carbon already in nearshore sediments. Researchers learned that water-soluble and thermodynamically favorable organic carbon (OC) protects bound OC from oxidation in densely vegetated areas—presumably because it is easier to break down than the bound OC. Areas with sparse vegetation were more likely to metabolize bound OC, likely leading to the loss of C from longer-term stored C pools. A unifying principle in both environments, however, seems to be the use of thermodynamically favorable C as a preferred substrate pool, providing a starting point for modelling the influences of C character in heterogeneous landscapes.

"Another interesting data point is that contrasting metabolic pathways oxidize OC in the presence versus absence of vegetation," said Graham. "Put simply, we have two different environments with distinct C inputs, C pools, and microbial communities. Each microbial community adapts to the resources available in their local environment and processes the C that returns the most energy back to them."

These important discoveries are just the tip of the iceberg, Graham and Stegen say. More studies are needed to understand and model the patterns of C loss in changing land conditions.

BER PM Contact
David Lesmes
Paul Bayer

PI Contact
Emily Graham
Pacific Northwest National Laboratory
emily.graham@pnnl.gov

James Stegen
Pacific Northwest National Laboratory
James.stegen@pnnl.gov

Funding
This research was supported by the U.S. Department of Energy's Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). This research was performed using Institutional Computing at PNNL.

Publications
Graham, Emily B., Malak Tfaily, Alex R. Crump, Amy E. Goldman, Lisa M. Bramer, Evan Amtzen, Elvira Romero, C. Tom Resch, David W. Kennedy, James C. Stegen. "Carbon inputs from riparian vegetation limit oxidation of physically-bound organic carbon via biochemical and thermodynamic processes." JGR Biogeosciences 122(12), 3188-3205 (2017). [DOI:10.1002/2017JG003967]

Related Links
http://sbrsfa.pnnl.gov/docs/highlights/Highlight_Stegen_et_al_2015.pdf
https://phys.org/news/2016-12-microbial-hyporheic-zone.html
http://sbrsfa.pnnl.gov/docs/highlights/Highlight_Stegen_Microbial_Communities_11282016.pdf
http://sbrsfa.pnnl.gov/docs/highlights/Highlight_Stegen_10-8-2015.pdf
http://sbrsfa.pnnl.gov/docs/highlights/Highlight_Stegen_et_al_2015.pdf

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)