U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A Challenging Future for Tropical Forests
Published: February 16, 2018
Posted: March 07, 2018

Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

The Science
Moist tropical forests are the largest terrestrial carbon sink in the world and house most of Earth's terrestrial biodiversity. However, climatic and ecological benefits of intact moist tropical forests face the threat of increasing tree mortality due to environmental and biotic changes. A Pacific Northwest National Laboratory scientist led a study to determine the risks of increasing tropical forest tree mortality. In this study, scientists reviewed the state of knowledge regarding moist tropical forest tree mortality. They created a conceptual framework with testable hypotheses regarding the drivers, mechanisms, and interactions that may underlie increasing mortality rates of moist tropical forests. The research team then identified next steps for improved understanding and reduced predictive uncertainty.

The Impact
Researchers found that mortality rates of trees in moist tropical forests are increasing as the drivers and mechanisms of tree mortality—such as temperature, drought, and carbon dioxide—continue to rise. These effects are expected to continue increasing under future environmental conditions, with serious consequences to Earth's carbon cycle.

Summary
Tropical forests absorb a significant amount of atmospheric carbon dioxide. Tree death reverses this process by shutting off photosynthesis and increasing carbon release (from dead wood), leaving more carbon dioxide in the atmosphere. Increasing tree mortality rates observed over the past few decades in moist tropical forests are associated with rising temperature, vapor pressure deficit, liana (woody vine) abundance, drought, wind events, fire, and possibly carbon dioxide fertilization-induced increases in stand thinning. Most of these mortality drivers ultimately kill trees in part through carbon starvation and hydraulic failure, though the relative importance of each driver is unknown. Ecosystems with greater diversity may buffer tropical forests against large-scale mortality events, but recent and expected trends in mortality drivers are likely to continue or increase. Model predictions of tropical tree mortality are rapidly improving, but they require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. This study identified critical hypotheses, data sets, and model developments required to quantify the underlying causes of increasing mortality rates and to improve predictions of future mortality and carbon storage consequences under environmental change.

Contacts (BER PM)
Dan Stover
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov

(PI Contact)
Nate McDowell
Pacific Northwest National Laboratory
nate.mcdowell@pnnl.gov

Funding
This manuscript is the product of the workshop "Tropical forest mortality" held in Santa Fe, New Mexico, in 2015. The U.S. Department of Energy Office of Science supported the workshop and the writing of the manuscript as part of the Next Generation Ecosystem Experiment-Tropics project

Publication McDowell, N.G. et al., "Drivers and Mechanisms of Tree Mortality in Moist Tropical Forests." New Phytologist, 2/16/18 early view (2018). [DOI:10.1111/nph.15027]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)