U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights

Impacts of Microtopographic Snow Redistribution and Lateral Subsurface Processes in an Arctic Polygonal Ecosystem
Published: January 08, 2018
Posted: February 06, 2018

Lateral subsurface hydrologic and thermal processes were explicitly represented in the E3SM Land Model.

The Science
A novel analysis of the impact of snow redistribution and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Utqiagvik (Barrow), Alaska.

The Impact
The research demonstrates the importance of including accurate surface distribution of snow in models in order to simulate the temperature of subsurface soil temperature and moisture, both vertically and horizontally, during winter and into the warmer seasons.

Current land surface models, including the E3SM Land Model v1 (ELMv1), are inadequate to capture landscape heterogeneity due to microtopographic features in the Alaskan Arctic costal plan. A team led by Lawrence Berkeley National Laboratory extended the ELM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy. The spatial heterogeneity of snow depth during the winter due to snow redistribution generated surface soil temperature heterogeneity that propagated in depth and time. Excluding lateral subsurface hydrologic and thermal processes led to an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. This work also demonstrates an important 3D modeling capability integrated in the global-scale land model ELMv1.

Contacts (BER PM)
Dorothy Koch and Daniel Stover
Dorothy.Koch@science.doe.gov (301-903-0105) and DanielStover@science.doe.gov

(PI Contact)
William J. Riley
Lawrence Berkeley National Laboratory

This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02- 05CH11231 as part of the NGEE-Arctic and Energy Exascale Earth System Model (E3SM) programs.

Bisht, G., W.J. Riley, H.M. Wainwright, B. Dafflon, Y. Fengming, and V.E. Romanovsky. "Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0." Geosci. Model Dev. 11, 61-76, (2018). [DOI:10.5194/gmd-11-61-2018]


Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 02, 2018
Influence of Hydroclimate Variability on Power System Operations Revealed through Integrated Modeling
Integrated multi-sector modeling shows that variations in water availability associated with El [more...]

Mar 01, 2018
Newly Discovered Bacteria Can Break Down Biomass
The bacteria from ruminants' digestive systems could provide insights for biomass conversion.more...]

Feb 28, 2018

New Technology for Consistently Identifying Proteins from a Dozen Cells

A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer c [more...]

Feb 26, 2018
Forest Lichens May Suffer Changes in Production and Range with Future Environmental Warming
Empirical and modeling approaches were used to assess the response of lichens as an indicator spe [more...]

Feb 22, 2018
Soil Microbiome in Arctic Polygonal Tundra Unlocked
Landscape topography structures the soil microbiome in Arctic polygonal tundra. The Sc [more...]