U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Tropical Forest Soil Carbon Stocks Predicted by Nutrients and Roots, not Aboveground Plant Biomass
Published: January 02, 2018
Posted: January 31, 2018

Soil base cation availability regulates tropical soil C stocks via a negative relationship with fine root biomass.

The Science
Scientists at UCLA and the Smithsonian conducted an extensive study of predictors of tropical soil C stocks to 1 m depth at 48 sites in Panama, including measurements of soil characteristics, plant biomass, and climate. The study revealed a nearly three-fold change in soil C stocks across five soil orders, with soil characteristics like fine root biomass, clay content, and nutrient base cations the strongest predictors of soil C stocks.

The Impact
Tropical forests are the most carbon (C)-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. Quantification of aboveground biomass in tropical forests has improved recently, but soil C dynamics remains one of the largest sources of uncertainty in Earth system models. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.

Overall, soil characteristics were the best predictors of soil C stocks, with no relationship to aboveground plant biomass or litterfall. The best fit model for our data suggested that available base cations provide an indirect control over tropical soil C stocks via a negative relationship with fine root biomass. Soil clay content and rainfall also emerged as significant predictors of soil C. In addition to the nearly three-fold change in soil C stocks, the sites used here covered five soil orders, over 25 geological formations, a two-fold range in rainfall, a 20-fold range in base cations, and a 100-fold range in available P. Thus, although the data come from a relatively restricted geographic region, the diversity of environmental conditions means that the results are likely to be broadly applicable over much larger geographical ranges.

Contacts (BER PM)
Daniela F Cusack
Assistant Professor, Department of Geography, UCLA

(PI Contact)
Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

Funding was provided by NSF GSS Grant #BCS-1437591 and DOE Office of Science Early Career Research Program Grant DE-SC0015898 to D. F. Cusack, and NERC Grant NE/J011169/1 to O. T. Lewis.

Cusack D.F., L. Markesteijn, R. Condit, O.T. Lewis, B.L. Turner. “Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots.” Biogeochemistry (2018). [DOI:10.1007/s10533-017-0416-8]

Related Links
Complete data on location, rainfall, geology, soil, litterfall, aboveground and root biomass in 48 plots in central Panama, excel format

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Cross-Cutting: Early Career


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Sep 25, 2018
Rarely Studied Microbes Associated With Production of Toxic Methylmercury in Great Lakes Estuary
New paper lays foundation for future studies of the role of understudied microorganisms in methylm [more...]

Sep 18, 2018
Vegetation Demographics in Earth System Models: A Review of Progress and Priorities
An assessment of current approaches to including individual plant dynamics in ESMs and the need for [more...]

Sep 11, 2018
Crown Damage and the Mortality of Tropical Trees
A study on crown damage, growth, and survival in a tropical forest in Borneo The Sciencemore...]

Aug 15, 2018
Warmer Temperatures Lengthen Growing Season, Increase Plants’ Vulnerability to Frost
Experimental warming treatments show how peatland forests may respond to future environmental chang [more...]

Aug 15, 2018
Using Isotopic Measurements to Diagnose Performance of Carbon Dynamics in Terrestrial Vegetation Models
Measurements of carbon-14 in plant tissues help to reduce uncertainties in predictions of an ecosys [more...]