U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

How Plant Roots Take Up Water from Soil
Published: May 04, 2017
Posted: January 26, 2018

A combined experimental and modeling approach quantitatively demonstrates in 3D the transport of water from the surrounding rhizosphere through plant roots.

The Science
Root water uptake is one of the most important processes in subsurface flow and transport modeling. It is driven by transpiration caused by the water potential gradient between the atmosphere and the plant. But the mechanisms of root water uptake are poorly known, and are represented only coarsely in macro-scale models because of the difficulties of both imaging and modeling such systems.

A new paper in the journal Rhizosphere, by Timothy D. Scheibe and three co-authors at the Pacific Northwest National Laboratory (PNNL), demonstrates a promising way to address those difficulties. In a pilot study, they successfully simulate three-dimensional root water uptake by applying a combination of X-ray Computed Tomography (XCT) and computational fluid dynamics (CFD) modeling at the pore-scale.

The Impact
The new coupled imaging-modeling approach introduces a realistic platform for investigating rhizosphere flow processes - one that could support translation of process understanding from a single-plant to vegetation scales. The same imaging-modeling method could also be used to simulate more realistic scenarios and compared to laboratory and field plot studies to improve process understanding.

Successful in-soil imaging of a live plant could unlock mysteries regarding the complex plant-soil-microbe interactions in the rhizosphere. This plant-root interface, teeming with microorganisms and bathed in water at every scale, is where complex chemical, biological, and physical interactions determine the health of plants, their root systems, and the surrounding soil.

To date, however, imaging and modeling root water uptake has been difficult. The complexity of the root architecture and soil properties makes explicit imaging problematic. Estimating plant-root and soil properties for modeling is also difficult, compounded by a poor understanding of the hydrological and biological processes involved in root water uptake.

In the last decade, a promising series of papers has shown the potential of integrating high-resolution imaging techniques and pore-scale modeling for investigating the interactions of soil, roots, and groundwater.

A team at PNNL recently combined non-invasive XCT imaging with both open-source and in-house software codes. They successfully imaged root water uptake at a micron-scale resolution in 3D and they also modeled the spatiotemporal variations of water uptake. What they call a “pioneer” pilot study provides a platform for future research into the role of plant roots in nutrient uptake, hydraulic redistribution, and other phenomena in the rhizosphere.

The researchers used a single Prairie dropseed (Sporobolus heterolepis) plant grown in a pot, which was rotated continuously during a scan that captured 3,142 projections (at four frames per projection). The raw images were used to create a three-dimensional dataset. From there, in-house PNNL software derived quantitative information, including root volume and surface area. The result was a mechanistic pore-scale numerical model of root uptake processes.

The study showed that soil water distribution was controlled by both plant-root and soil conductivity, and by transpiration rate. But more broadly, it demonstrated a realistic platform for investigating rhizosphere flow processes.

BER Program Contacts
David Lesmes, Subsurface Biogeochemical Research
(301) 903-2977

Paul Bayer, Subsurface Biogeochemical Research
(301) 903-5324

Dan Stover, Terrestrial Ecosystem Sciences
(301) 903-0289

PI Contact
Timothy D. Scheibe
Pacific Northwest National Laboratory
Tim.scheibe@pnnl.gov (509-371-7633)

This research was supported by the U.S. Department of Energy (DOE) Biological and Environmental Research (BER) Division through the Terrestrial Ecosystem Science (TES) program and the Subsurface Biogeochemical Research (SBR) program, through the PNNL SBR Scientific Focus Area Project. Part of this research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a DOE scientific user facility located at Pacific Northwest National Laboratory (PNNL).

Yang, X., T. Varga, C. Liu, and T.D. Scheibe. “What can we learn from in-soil imaging of a live plant: X-ray Computed Tomography and 3D numerical simulation of root soil system.” Rhizosphere 3(2), 259-262 (2017). [DOI: 10.1016/j.rhisph.2017.04.017]
(Reference link)

Related Links
PubMed: “Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data” J Vis Exp. 2016 Apr 26;(110). [DOI:10.3791/53788]
Soil Science Society of America Journal Abstract - Soil Physics: “A Unified Multiscale Model for Pore-ScaleFlow Simulations in Soils” [DOI:10.2136/sssaj2013.05.0190]

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)