U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Measuring the Impact of Mesoscale Eddies in the Ocean’s Climate
Published: January 26, 2017
Posted: January 26, 2018

Understanding the role of oceanic mesoscale eddies on the climate via an equilibrated force balance.

The Science
With unprecedented fidelity we are able to clearly explain the full force balance in an idealized configuration of the Southern Ocean.

The Impact
The role of the mesoscale eddies is to move the imposed surface wind stress to the ocean bottom; eddies accomplish this through the vertical transport of eastward momentum. The climate of the Southern Ocean is impossible to realize without the action of mesoscale eddies.

Ocean mesoscale eddies are the weather of the ocean and act as vehicles for the transport and mixing of heat, carbon and momentum. This work makes significant progress toward accurately measuring the force that mesoscale eddies exert on mean, climatological ocean flow by closing the momentum force balance in an eddy-rich re-entrant channel similar to that of the Southern Ocean. We find that mesoscale eddies play a leading role in the force balance. In fact, the very structure of the ACC and the entire Southern Ocean depends on the existence of mesoscale eddies to move the atmosphere-driven wind stress from the ocean surface to the ocean floor. The vertical motion induced by mesoscale eddies brings, in an alternating manner, warm (light) and cold (dense) waters to the ocean's surface, thereby moving heat into and out of the ocean. In summary, this work has taken a significant step toward the construction of a robust conceptual model to interpret and quantify the role of ocean mesoscale eddies in the Earth's climate system.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling

(PI Contact)
Todd D Ringler
Los Alamos National Laboratory

The U.S. Department of Energy Office of Science, Biological and Environmental Research supported this research as part of the Earth System Modeling (ESM) program through the Accelerated Climate Modeling for Energy (ACME) project and the SciDAC multiscale project.

Ringler, T., J.A. Saenz, P.J. Wolfram, and L. Van Roekel. "A Thickness-Weighted Average Perspective of Force Balance in an Idealized Circumpolar Current." Journal of Physical Oceanography 47, 285-302 (2017). [DOI:10.1175/JPO-D-16-0096.1]
(Reference link)

Related Links
BER Highlight: Measuring the Impact of Mesoscale Eddies in the Ocean's Climate

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Cross-Cutting: Scientific Computing and SciDAC

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)