U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale
Published: June 09, 2017
Posted: January 26, 2018

Evaluate a methodology to test Earth system models quickly on large scale computing systems.

The Science
In this paper, the utility of ensembles-based testing framework is demonstrated; it was shown that running many short simulations is more efficient than running a single long simulation. It was also demonstrated that aggressive optimizations can lead to simulations with a statistically distinct model state. Also, averaged behavior of many single year runs of the atmosphere are statistically different than one long run, demonstrating atmosphere low-frequency variability.

The Impact
Ensembles-based testing provides faster verification to model developers when developing at scale. With this testing, developers can now more effectively use multicore computing systems when performing development model simulations.

A strict throughput requirement has placed a cap on the degree to which we can depend on the execution of single, long, fine spatial grid simulations to explore global atmospheric climate behavior. Whereas, running an ensemble of short simulations is computationally more efficient. We test the null hypothesis that the climate statistics of a full-complexity atmospheric model derived from an ensemble of independent short simulation is equivalent to that from an equilibrated long simulation. The climate of short simulation ensembles is statistically distinguishable from that of a long simulation in terms of the distribution of global annual means, largely due to the presence of low-frequency atmospheric intrinsic variability in the long simulation. We also find that model climate statistics of the simulation ensemble are sensitive to the choice of compiler optimizations. While some answer-changing optimization choices do not affect the climate state in terms of mean, variability and extremes, aggressive optimizations can result in significantly different climate states.

Contacts (BER PM)
Dorothy Koch
Earth System Modeling Program

(PI Contact)
Salil Mahajan
Oak Ridge National Laboratory

The U.S. Department of Energy Office of Science, Biological and Environmental Research supported this research as part of the Accelerated Climate Modeling for Energy (ACME) project of the Earth System Modeling (ESM) program.

Mahajan S., A. L. Gaddis, K. J. Evans, and M. R. Norman. “Exploring an ensemble-based approach to atmospheric climate modeling and testing at scale.” Procedia Computer Science, 108C, 735-744, (2017). [DOI:10.1016/j.procs.2017.05.259]
(Reference link)

Related Links
BER Highlight: Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)