U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Changing Character of 21st Century Precipitation over the Western United States in the Variable-Resolution CESM
Published: August 23, 2017
Posted: January 26, 2018

Using variable-resolution climate modeling to understand regional climate change.

The Science
Using the variable-resolution CESM, projections of the future precipitation climatology in the western US through the end-of-century are developed and explained using the large-scale meteorological fields. Extreme precipitation is observed to increase throughout the US West, particularly in the Pacific Northwest; however, increases are modulated by limited soil water content.

The Impact
This study opens the door for future climate assessments to use the variable-resolution CESM to achieve high resolution over regional domains, particularly in regions where rapid topographic variation is important to determining the local climatology. The research also provides high-resolution predictions of future precipitation climatology through the end-of-century that are valuable to water managers and stakeholders, who depend on climate data for adaptation planning.

Summary
It is well known that the impact of a changing climate on the character of precipitation is complicated, and changes in mean precipitation may not be informative to understanding changing extremes. Given so many climate models focus on global scales, this paper adds value to the literature on changing precipitation by addressing changes to regional scale features by the end of 21st-century over the western U.S. In order to accommodate the complex topography of the U.S. West and its various local climate zones, a series of long-term simulations with relatively high local grid resolution are produced covering different phases from the historical period through the end of 21st-century. An up-to-date climate model (Climate Earth System Model) with variable-resolution is employed which combines the benefits of two-way scale interactions and refined numerical downscaling.

According to the simulation results, over the Pacific Northwest extreme precipitation events are observed to increase significantly because of increased cool-season integrated vapor transport associated with a moistening of the cool seasons and drying through the warm seasons. Extreme precipitation in this region appears to increase more rapidly than would be predicted by the Clausius-Clapeyron relationship. Over California, precipitation climatology is mainly attributed with large interannual variabilities that are tied closely to ENSO patterns.

Contacts (BER PM)
Dorothy Koch
Dorothy.Koch@science.doe.gov

Randall Laviolette
Randall.Laviolette@science.doe.gov

(PI Contact)
Bill Collins
Lawrence Berkeley National Laboratory
WDCollins@lbl.gov

Funding
Support for this project comes from the Department of Energy Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System project under contract no. DE-AC02-05CH11231 and from award no. DE-SC0016605,”An Integrated Evaluation of the Simulated Hydroclimate System of the Continental US.”

Publications
Huang, X., and P.A. Ullrich. “The changing character of 21st century precipitation over the western United States in the variable-resolution CESM”. J. Climate, 30(18) 7555-7575 (2017). [DOI:10.1175/JCLI-D-16-0673.1]
(Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)