BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Assembly of Microbial Communities Affects Biogeochemistry
Published: November 01, 2017
Posted: January 23, 2018

Dispersal varies the relationship between microbial communities and biogeochemical function.

The Science
Microbial communities are like our own societies. In their natural environments, where they’re comfortable and acclimated, both microbes and humans tend to thrive. They know how to navigate their surroundings, how to survive, and they concentrate their energy on being productive. When dispersed to an unfamiliar environment, organisms are naturally maladapted to their surroundings. Additionally, when it comes to communities with more organisms arriving through dispersal, research indicates there’s a lower rate of functioning. This concept, detailed in a new paper by PNNL researchers Emily Graham and James Stegen, brings us a step closer to understanding how a microbial community functions based on how it was assembled.

The Impact
Microbial communities have a profound impact on biogeochemical processes, which transform chemical nutrients as they circulate through biological and physical worlds. By increasing our understanding of how microbial communities function, we can develop models that predict important things such as the rate of nutrient cycling in a given area, during a given time of year.

Microbial communities are assembled by deterministic (selection) and stochastic (dispersal) processes. The relative influence of these two process types is believed to alter how microbial communities affect biogeochemical function. But recent attempts to link microbial communities and environmental biogeochemistry have yielded mixed results.

In this study, Graham and Stegen proposed a new conceptualization of microbial-biogeochemical relationships and created an ecological simulation model to demonstrate that microbial dispersal decreases biogeochemical function. Simply put, microbes that disperse into a community aren’t as productive as ones that were selected to live within that environment.

In a community of microbes selected to live in that environment, the microbes were well-adapted to their environment and productivity was high. But when microbes were introduced to the community via dispersal, productivity decreased, even as diversity increased.

In communities comprised mostly of microbes arriving via dispersal, productivity decreased significantly. Stegen and Graham propose that this effect is pronounced in natural settings in which dispersing microbes use more energy for survival than for catalyzing biogeochemical processes. This indicates that community structure and function are linked via ecological assembly processes that are influenced by microbial adaptation to local conditions.

The next step, say researchers, is incorporating assembly processes into emerging model frameworks that explicitly represent microbes and that mechanistically represent biogeochemical reactions. Specifically, the researchers plan to incorporate this framework into ongoing efforts by the PNNL SBR SFA team using a reactive transport model (PFLOTRAN) applied across a broad range of spatial and temporal scales.

BER PM Contact
David Lesmes
Paul Bayer

PI Contact
Emily Graham
Pacific Northwest National Laboratory

James Stegen
Pacific Northwest National Laboratory

This research was supported by the U.S. Department of Energy’s Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program’s Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). This research was performed using Institutional Computing at PNNL.

Graham, E. and J. Stegen. “Dispersal-Based Microbial Community Assembly Decreases Biogeochemical Function.” Processes 5(4), 65 (2017). [DOI: 10.3390/pr5040065]

Related Links
PNNL Highlight: Modeling Microbial Ecology in the Hyporheic Zone News: A new model for microbial communities in the hyporheic zone
Highlight slide: Towards Better Models of Subsurface Microbial Communities [PDF]
Highlight slide: Groundwater-Surface Water Mixing in the Hyporheic Zone Stimulates Organic Carbon Turnover [PDF]
Highlight slide: Estimating and Mapping Ecological Processes Influencing Microbial Community Assembly [PDF]

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)