U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Modeling Condensation in Thunderstorm Clouds
Published: June 29, 2017
Posted: January 23, 2018

Simple model of condensation may not be sufficient for moderate thunderstorms.

The Science
Condensation of water vapor to form and grow cloud droplets is one of the most fundamental processes of cloud and precipitation formation. It drives cloud-scale winds and vertical air motion through the release of latent heat and determines the strength of storm updrafts, the upward winds that enable cumulus clouds to grow into thunderstorms.

The Impact
Two methods of cloud droplet condensation in cloud models were compared for simulations of scattered thunderstorms. The more detailed explicit condensation method led to stronger vertical motion in the thunderstorm cores and more upper-level cloudiness. Adding the effects of explicit condensation to weather and Earth system models will improve their ability to predict details of thunderstorms, including rain amount.

Summary
Cloud models simulate condensation using two different methods. The first is the simple “saturation adjustment” method in which exactly water-saturated conditions are assumed inside liquid clouds--that is, relative humidity is assumed to be 100%. The second method is more detailed and calculates condensation explicitly using the model’s predicted relative humidity, allowing humidity to be larger than 100% inside clouds. These two methods were compared in model simulations of scattered thunderstorms using the “piggybacking” approach that robustly separates dynamical from cloud microphysical effects. The saturation adjustment method produced larger thunderstorm vertical velocities due to its greater latent heating during condensation, leading to the clouds having more buoyancy. There was also a large impact on upper-level anvil clouds. Simulations using the explicit condensation method had more numerous, smaller ice particles that fell out more slowly compared to the simulations using saturation adjustment, leading to thicker, longer-lasting upper-level clouds. These findings have implications for simulating convective storms since most models use the simpler saturation adjustment approach, while the explicit condensation method is believed to be more accurate. However, results depend somewhat on details of the aerosol particles ingested into storms that activate cloud droplets, and more detailed observations are needed to confirm the existence of these high relative humidities inside thunderstorm clouds simulated by the explicit condensation method. This suggests a need for improvements in our ability to measure humidity accurately inside clouds. These results also suggest that the simpler saturation adjustment method can be modified in a straightforward way to capture the effects of explicit condensation, which will be explored in future work.

Contacts (BER PM)
Shaima Nasiri
ASR Program Manager
Shaima.Nasiri@science.doe.gov

Ashley Williamson
ASR Program Manager
Ashley.Williamson@science.doe.gov

(PI Contact)
Hugh Morrison
National Center for Atmospheric Research
morrison@ucar.edu

Funding
This work was partially supported by the U.S. DOE ASR grant DE-SC0016476. WWG was also partially supported by the Polish National Science Center (NCN) “POLONEZ 1” grant 2015/19/P/ST10/02596. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Publication
Grabowski, W.W. and H. Morrison. "Modeling condensation in deep convection." Journal of the Atmospheric Sciences, 74: 2247-2267 (2017). [DOI: 10.1175/JAS-D-16-0255.1]

Related Links
ASR Highlight: Modeling Condensation in Thunderstorm Clouds

Topic Areas:

  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)