U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Anaerobic Microsites have an Unaccounted Role in Soil Carbon Stabilization
Published: November 24, 2017
Posted: January 23, 2018

Anaerobic microsites within soils impart an unrecognized metabolic protection to carbon, creating a carbon sink vulnerable to climate and land-use change.

The Science
Mechanisms controlling soil carbon storage and feedbacks to the climate system remain poorly constrained. Here, a research team a led by Stanford University shows that anaerobic microsites stabilize soil carbon by shifting microbial metabolism to less efficient anaerobic respiration and protecting reduced organic carbon compounds from decomposition.

The Impact
Without recognizing the importance of anaerobic microsites in stabilizing carbon in soils, terrestrial ecosystem models are likely to underestimate the vulnerability of the soil carbon reservoir to disturbance induced by climate or land use change. Further, carbon mitigation strategies based largely on land management can be optimized accordingly to maximize soil storage.

Soils represent the largest carbon reservoir within terrestrial ecosystems. The mechanisms controlling the amount of carbon stored and its feedback to the climate and Earth system, however, remain poorly resolved. Global land models assume that carbon cycling in upland soils is entirely driven by aerobic respiration; the impact of anaerobic microsites (small oxygen poor sites in the soil) prevalent even within well-drained soils is missed within this framework. Here, they show that anaerobic microsites are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration, and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. The vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon-climate feedback that should be incorporated into terrestrial ecosystem models.

Daniel Stover
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Scott Fendorf (lead PI)
Stanford University
Email: Fendorf@stanford.edu

Marco Keiluweit
University of Massachusetts Amherst
Email: keiluweit@umass.edu

This work was supported by the US Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Program (Award Number DE-FG02-13ER65542), and Subsurface Biogeochemistry Program (Award Number DE-SC0016544). A portion of this research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Keiluweit M., T. Wanzek, M. Kleber, P. Nico, and S. Fendorf. “Anaerobic microsites have an unaccounted role in soil carbon stabilization.” Nature Communications 8, Article No. 1771 (2017).  [DOI: 10.1038/s41467-017-01406-6]

Related Links
Phys.org Article: Disrupting sensitive soils could make climate change worse, researchers find
Science Daily: Soil researchers quantify an underappreciated factor in carbon release to the atmosphere
Engadget: Unearthing oxygen-starved bacteria might worsen climate change

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)