U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Microtopography Determines How CO2 and CH4 Exchanges Respond to Temperature and Precipitation at an Arctic Polygonal Tundra Site
Published: December 20, 2017
Posted: January 23, 2018

Microtopography in polygonal tundra affects CO2 and CH4 emissions, but landscape scaling of polygon types accurately represents landscape-scale gas exchanges with the atmosphere.

The Science
Scientists from Lawrence Berkeley National Laboratory applied a well-tested three-dimensional land model (ecosys) to the NGEE-Arctic Barrow, Alaska polygonal tundra sites to quantify and scale the effects of microtopography on biogeochemistry, hydrology, and plant processes and thereby CO2 and CH4 exchanges with the atmosphere. Much of the spatial and temporal variations in CO2 and CH4 fluxes were driven from topographic effects on water and snow movement. Although small-scale elevation variation causes large spatial variations, their results demonstrated that representing individual polygon type dynamics allowed for accurate predictions of landscape-scale states and gas exchanges with the atmosphere.

The Impact
They demonstrated excellent agreement between model predictions and NGEE-Arctic observations of CH4 and CO2 fluxes and the relevant biogeochemical, hydrological, and thermal controlling processes. Interestingly, the net primary productivity in higher features and CH4 emissions across the landscape increased from 1981 to 2015 were attributed more to precipitation than temperatures increases. Their results highlight needed improvements to the DOE E3SM land model (ELMv1-ECA), which they are actively pursuing.

Summary
Current ESM land model representations of high-latitude biogeochemistry and plant processes in spatially heterogeneous landscapes ignore several important processes and representation. They found a strong control of water and snow movement on biogeochemical dynamics and net primary production that varied by landscape position. The landscape-scale dynamics were also well captured by scaling the various polygon type dynamics. The analysis here demonstrates a viable approach to representing fine-scale processes and links to landscape scales. Together their findings challenge widely held assumptions about controls on landscape-scale energy and water budgets, and are motivating our ongoing improvements to the DOE land model (ELMv1-ECA).

BER PM Contacts
Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

PI Contact
William J. Riley
Lawrence Berkeley National Laboratory
wjriley@lbl.gov

Funding
This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under Contract No. DE-AC02-05CH11231 as part of the Next-Generation Ecosystem Experiments (NGEE Arctic) project.

Publications
Grant, R.F., Z.A. Mekonnen, W.J. Riley, B. Arora, and M.S. Torn. “Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography Determines How CO2 and CH4 Exchange Responds to Changes in Temperature and Precipitation.” JGR-Biogeosciences, 122 (12), 3174-3187 (2017). [DOI: 10.1002/2017JG004037]

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)