BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Inter-Annual Variability of Net and Gross Ecosystem Carbon Fluxes
Published: June 07, 2017
Posted: January 23, 2018

A review.

The Science
Interannual variability in net carbon exchange in terrestrial ecosystems is large relative to its long-term mean. Furthermore, ecosystem photosynthesis contributed more to net carbon exchange than respiration.

The Impact
Long-term carbon flux measurements are needed for many reasons. Most importantly, these measurements enable the study of ecosystems on ecosystem time scales, which exceed decades. Long-term flux studies are needed to provide information on whether or not, and, if so, how fast, ecosystem metabolism may be responding to a changing world that is warmer, bathed in more carbon dioxide (CO2), experiencing variation in rainfall and different degrees of nitrogen deposition, air pollution, and disturbance from humans, diseases, and pests. This behavior, co-occurring with other Earth system changes such as increasing global temperatures, a changing hydrological cycle and rising atmospheric CO2 levels, will contribute to critically important longer time series measurements.

Summary
As the lifetime of regional flux networks approach 20 years, there are a growing number of papers that have published long-term records (five years or more) of net carbon fluxes between ecosystems and the atmosphere. Unanswered questions from this body of work are: (1) how variable are carbon fluxes on a year to year basis? (2) what are the biophysical factors that may cause interannual variability and/or temporal trends in carbon fluxes? and (3) how does the biophysical control on this carbon flux variability differ by climate and ecological spaces? To address these questions, researchers surveyed published data from 59 field study sites that reported on five or more years of continuous measurements, yielding 544 site-years of data.

A disproportionate fraction of the yearly variability in net ecosystem exchange was associated with biophysical factors that modulated ecosystem photosynthesis rather than ecosystem respiration. Yet, there was appreciable and statistically significant covariance between ecosystem photosynthesis and respiration. Consequently, biophysical conditions that conspired to increase ecosystem photosynthesis from one year to the next were associated with an increase in ecosystem respiration, and vice versa; on average, the year-to-year change in respiration was 40% as large as the year-to-year change in photosynthesis. The analysis also identified sets of ecosystems that are on the verge of switching from being carbon sinks to carbon sources. These include sites in the Arctic tundra, the evergreen forests in the Pacific Northwest, and some grasslands, where year-to-year changes in respiration are outpacing those in photosynthesis.

Contacts
BER Program Manager
Daniel Stover
Terrestrial Ecosystem Science, SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

Principal Investigator
Dennis Baldocchi
University of California, Berkeley
Berkeley, CA 94720
baldocchi@berkeley.edu

Funding
This research was supported by funding from the Office of Biological and Environmental Research, within the U.S. Department of Energy (DOE) Office of Science, through the Terrestrial Ecosystem Science program and its support of the FLUXNET and AmeriFlux projects. Funding for the AmeriFlux Management Project was provided by the DOE Office of Science under Contract No. DE-AC02-05CH11231. Funding for FLUXNET was under contract DESC0012456.

Publications
Dennis Baldocchi, Housen Chu, and Markus Reichstein. "Inter-annual variability of net and gross ecosystem carbon fluxes: A review." In Agricultural and Forest Meteorology 249, 520–33 (2018). [DOI:10.1016/j.agrformet.2017.05.015].

Related Links
(Reference link)

Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)