U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Bacteria Use Multiple Enzymes to Degrade Plant Biomass
Published: October 19, 2017
Posted: January 23, 2018

Gene expression of cells grown in lignin and glucose were compared to cells grown in glucose alone at the same time point. Cultures with lignin achieved twice the cell biomass as cultures grown without lignin, and degraded 60 percent of the available lignin.

Analyses reveal how bacteria degrade lignin and provide better understanding for producing biofuels.

The Science
The production of biofuels from plant biomass is a highly promising source of energy, but researchers are trying to find microbes that readily degrade recalcitrant lignin found in plant biomass. Recent comprehensive genomic and metabolomic analysis of a known lignin-degrading bacterium provides insight into how this degradation is accomplished.

The Impact
Because the initial step of manufacturing biofuels from plant matter is the decomposition of complex lignocellulose into more manageable “building blocks,” an understanding of how nature achieves biomass breakdown is critical. The findings from a new study reveal some of the basic tools used by a specific microbe to break down lignocellulose. This work provides insight into how industrial processes might achieve degradation during biofuel production, and how side processes such as hydrogen production might be harnessed as well.

Summary
Lignocellulosic biomass represents nearly 90 percent of the dry weight of total plant biomass material, and is composed of cellulose and lignin. Lignin lends rigidity and rot-resistance to cell walls in wood and bark. It is a complex, cross-linked phenolic structure that makes lignocellulosic-derived biofuels a promising source of alternative energy, provided the recalcitrant material can be degraded and toxic by-products can be managed. Microbial species that grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing lignin in a way that protects cellulose for improved conversion of lignin to fuel precursors. One candidate species that can use lignin for growth in the absence of oxygen is Enterobacter lignolyticus SCF1, a bacterium isolated from tropical rain forest soil. A team of researchers from the University of Massachusetts, Amherst; Santa Maria University in Valparaiso, Chile; and EMSL, the Environmental Molecular Sciences Laboratory conducted whole gene-expression analysis of E. lignolyticus SCF1 using next generation sequencing for transcriptomic analysis. The experiments were conducted on cells grown in the presence of lignin, with samples taken at three different times during growth. Cultures with lignin achieved twice the cell biomass as cultures grown without lignin, and E. lignolyticus SCF1 degraded 60 percent of the available lignin. A complement of enzymes consistent with disruption of the chemical structures present in lignin were up-regulated in lignin-amended conditions. Additionally, the association of hydrogen production with lignin degradation suggests a possible value added stream to lignin degradation in the future.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Kristin DeAngelis
University of Massachusetts Amherst
deangelis@microbio.umass.edu

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research (BER)), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility, and the Joint BioEnergy Institute (http://www.jbei.org); and the University of Massachusetts Amherst.

Publication
Orellana, R., G. Chaput, L.M. Markillie, H.D. Mitchell, M.J. Gaffrey, G. Orr, and K.M. DeAngelis, “Multi-time series RNA-Seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium.” PLoS One, 12(10) (2017). [DOI: 10.1371/journal.pone.0186440]

Related Links
Bacteria Use Multiple Enzymes to Degrade Plant Biomass EMSL science highlight

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)