Genomic Science Program. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Genomic Science Program

Aerobic Wetlands Emit High Levels of Methane
Published: November 16, 2017
Posted: January 23, 2018

Old Woman Creek National Estuarine Research Reserve. [Photo by Jordan Angle. Image courtesy of The Ohio State University.]

Genomic analysis reveals a novel methanogenic microbial species that is a significant contributor to overall wetland methane emissions.

The Science
A paradigm—microbial methane production can only occur in habitats devoid of oxygen—has been widely incorporated into soil biogeochemical models. However a recent study revealed clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland.

The Impact
This study provides the first genomic level evidence for existence of a novel methanogenic microbial species that is not only globally distributed, but a major contributor to methane emissions from freshwater wetlands. By challenging a widely held assumption about methane production, the findings could have significant implications for global methane estimates and earth system modeling.

Currently, biogeochemical models and biological studies typically discount microbial methane production in oxygen-rich surface soils. Scientists have traditionally assumed microbial enzymes involved in methane production are inactivated by oxygen, and methane-producing microbes do not compete well with other microorganisms in oxygenated environments. Challenging these assumptions, a team of researchers from The Ohio State University, University of Colorado Denver, Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory recently provided the first ecosystem-scale demonstration of methane production in oxygen-rich soils. The researchers assessed biological methane production and emissions across multiple spatial and temporal gradients in freshwater wetland soils at the shore of Lake Erie. Surprisingly, there was approximately 10 times more  methane production in oxygenated soils than in oxygen-depleted soils. In this particular wetland, it was estimated that up to 80 percent of the methane originated from oxygenated soil layers. Metabolomic responses were characterized using complementary capabilities at EMSL, the Environmental Molecular Sciences Laboratory, and JGI, the Joint Genome Institute, both DOE Office of Science user facilities. Combining the 800 MHz NMR Denali (liquids) and 600 MHz NMR Hood (metabolomics) spectrometers at EMSL and metagenomic and metatranscriptomic sequencing at JGI, the researchers provided the first holistic insight into methane-producing microbes active in oxygen-rich environments, recovering the first near complete genomes for a new species of methanogenic Archaea, Candidatus Methanothrix paradoxum. By mining public databases, the researchers discovered this organism is prevalent in diverse habitats spanning the globe. Taken together, the findings demonstrate the significant extent of methane production in oxygen-rich soils. If used to refine earth system models, the findings could lead to more accurate predictions of net wetland methane emissions and their effects on global biogeochemical processes.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Kelly Wrighton
The Ohio State University

This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL) and the Joint Genome Institute (JGI), both DOE Office of Science user facilities. Additional support came from the Office of Biological and Environmental Research’s Early Career Program and Office of Science’s Ameriflux Management Project.

Angle, J.C., T.H. Morin, L.M. Solden, A.B. Narrowe, G.J. Smith, M.A. Borton, C. Rey-Sanchez, R.A. Daly, G. Mirfenderesgi, D.W. Hoyt, W.J. Riley, C.S. Miller, G. Bohrer, and K.C. Wrighton. “Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions.” Nature Communications, 8 (1): Article no. 1567 (2017). [DOI: 10.1038/s41467-017-01753-4]

Related Links
Researchers pin down one source of a potent greenhouse gas, Ohio State News
Aerobic Wetlands Emit High Levels of Methane EMSL science highlight

Topic Areas:

  • Research Area: Carbon Cycle, Biosequestration
  • Research Area: Climate and Earth System Modeling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and DNA Sequencing
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)
  • Cross-Cutting: Scientific Literature
  • Cross-Cutting: Early Career
  • Mission Science: Climate


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Search all BER Highlights

Recent Highlights

Nov 16, 2017
Aerobic Wetlands Emit High Levels of Methane
Genomic analysis reveals a novel methanogenic microbial species that is a significant contributor [more...]

Oct 19, 2017
Bacteria Use Multiple Enzymes to Degrade Plant Biomass
Analyses reveal how bacteria degrade lignin and provide better understanding for producing biofue [more...]

Aug 01, 2017
Insights into an Eukaryotic Alga that Lives by the Sea
The genome of Porphyra umbilicalis reveals the mechanisms by which it thrives in the int [more...]

Jul 21, 2017
Scaling Microbial Genomics Discoveries for Ecosystem Modeling
Nutrient availability in model wetlands helps regulate microbial metabolism and soil carbon cycl [more...]

Jul 05, 2017
Tiny Green Algae Reveal Large Genomic Variation
First complete picture of genetic variations in a natural algal population could help explain how [more...]