Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program



A Regional Model for Uranium Redox State and Mobility in the Environment
Published: September 05, 2017
Posted: January 22, 2018

Redox variable sediments mediate uranium mobility in the upper Colorado River Basin.

The Science
Two new studies shed light on an important and previously underappreciated biogeochemical redox ‘engine’ believed to mediate groundwater quality in floodplains within the upper Colorado River Basin (CRB). Sediments enriched in organic carbon were found to be common within saturated zones and capillary fringes, to be highly redox active, and to strongly accumulate sulfide and uranium. The research showed that uranium was present as U(IV) complexed to organic matter and likely to mineral surfaces. The stability and predominance of these complexes is controlled by the abundance of organic and mineral surface functional groups, and the intensity of oxidative cycling.

The Impact
Complexation of U(IV) by sediment organic matter drives accumulation of uranium. However, redox cycling provides a mechanism by which U(IV), nutrients, and other contaminants can be seasonally transformed and released to groundwater. These new findings provide biogeochemical processes models needed to predict the behavior of redox-active species in floodplains in the upper CRB.

Summary
Uranium contamination stubbornly persists as a challenging and costly water quality concern at former uranium ore processing sites across the upper CRB. Plumes at these sites are not self-attenuating via natural flushing by groundwater as originally expected. Recent studies at the Rifle, CO legacy site suggest that organic-enriched anoxic sediments locally create conditions that promote reduction of U(VI) to relatively immobile U(IV), causing it to accumulate. Organic-enriched sediments at Rifle accumulate uranium under persistently saturated and anoxic conditions. However, incursion of oxidants into reduced sediments, if it were to occur, could transform contaminants, allowing organic-enriched sediments to act as secondary sources of uranium. Oxidant incursions do take place during periods of changing water tables, which occur throughout the year in the upper CRB. If organic-enriched sediments were regionally common in the upper CRB, and if they were exposed to varying redox conditions, then they could help to maintain the longevity of U plumes regionally. Cyclic redox variability would also have major implications for mobility of carbon, nitrogen, and metal contaminants in groundwater and surface waters.

To investigate these issues, Noël et al. (2017a,b) examined the occurrence and distribution of reduced and oxidized iron, sulfur, and uranium species in sediment cores spanning dry/oxic to wet/reduced conditions at three different sites across the upper CRB. The research used detailed molecular characterization involving chemical extractions, X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and X-ray microspectroscopy. This work demonstrates that anoxic organic-enriched sediments occur at all sites, strongly accumulate sulfides and uranium, and are exposed to strong seasonal redox cycles. Uranium was found to be present as U(IV) complexed to sediment-associated organic carbon and possibly to mineral surfaces. This finding is significant because complexed U(IV) is relatively susceptible to oxidative mobilization. Sediment particle size, organic carbon content, and pore saturation, control redox conditions in sediments and thus strongly influence the biogeochemistry of iron, sulfur, and uranium. These findings help to illuminate the mechanistic linkages between hydrology, sediment texture, and biogeochemistry. They further provide enhanced contextual and conceptual underpinnings to support reactive transport modeling of uranium, other contaminants, and nutrients in redox variable floodplains, a subject of importance to BER research missions.

Contacts (BER PM)
Roland Hirsch
DOE Office of Biological and Environmental Research, Climate and Environmental Sciences Division
roland.hirsch@science.doe.gov

(PI Contact)
John Bargar
SLAC National Accelerator Laboratory, Stanford Synchrotron radiation Lightsource
Bargar@slac.stanford.edu

Funding
Funding was provided by the DOE Office of Biological and Environmental Research, Subsurface Biogeochemistry Research (SBR) activity to the SLAC SFA program under contract DE-AC02-76SF00515 to SLAC. Use of SSRL is supported by the U.S. DOE, Office of Basic Energy Sciences. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research (BER) (located at PNNL).  Sample collection at the Rifle, CO site was supported by the LBNL Watershed Function SFA, sponsored by the BER Climate and Environmental Sciences division.  Sample collection at the Naturita and Grand Junction, CO sites was supported by the DOE Office of Legacy Management.

Publications
Noël, V.; Boye, K.; Dynes, J.; Lezama-Pacheco, J. S.; Bone S.; Janot, N.; Cardarelli, E.; Williams, K. H.; Bargar, J. R. Redox constraints over U(IV) mobility in the floodplains of Upper Colorado River basin. Environmental Science & Technology. 2017b, 51, 10954-10964. DOI: 10.1021/acs.est.7b02203

Noël, V.; Boye, K.; Kukkadapu, R. K.; Bone, S.; Lezama-Pacheco, J. S.; Cardarelli, E.; Janot, N.; Fendorf, S.; Williams, K. H.; Bargar J. R. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Science of the Total Environment. 2017a, 603-604, 663-675. DOI: 10.1016/j.scitotenv.2017.01.109

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Structural Biology Infrastructure
  • Cross-Cutting: Scientific Literature
  • Mission Science: Environmental Cleanup

 

Recent Highlights

Nov 21, 2017
CrunchFlow Receives 2017 R&D 100 Award
Powerful software simulates how chemical reactions occur and change as fluids travel underground. [more...]

Nov 01, 2017
Assembly of Microbial Communities Affects Biogeochemistry
Dispersal varies the relationship between microbial communities and biogeochemical function.
more...]

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]

Sep 05, 2017
A Regional Model for Uranium Redox State and Mobility in the Environment
Redox variable sediments mediate uranium mobility in the upper Colorado River Basin. [more...]

Aug 26, 2017
New Approach to Characterize Natural Organic Matter in Belowground Sediments
Efforts to characterize carbon stored in sediments below 1 meter are critical for understanding t [more...]