U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understand the Effects of Climate on Probable Maximum Precipitation and Flood
Published: May 05, 2017
Posted: January 19, 2018

The Science
A high-resolution, numerical modeling framework was established and used by researchers from Oak Ridge National Laboratory (ORNL) to simulate the probable maximum precipitation (PMP) and flood (PMF) in a changing environment.  An increase in the deterministic PMP storm upper bound is projected through two different modeling approaches, suggesting a high likelihood of PMP enhancement in a warming climatic environment.

The Impact
PMP is the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions.  It is the design standard of highly important energy-water infrastructures such as dams and nuclear power plants.  The increase of PMP has significant implications for our coupled energy-water security. New techniques developed here can help inform our understanding of PMP.

Summary
Probable maximum precipitation (PMP) and flood (PMF), defined as the largest rainfall depth and flood event that could physically occur under a series of adverse atmospheric and hydrologic conditions, have been an important design criterion for critical infrastructures such as dams and nuclear power plants in the United States. To understand how PMP and PMF may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa river basin in the southeastern United States. Six sets of Weather Research and Forecasting model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms, were conducted. ORNL results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.

Contacts (BER PM)
Bob Vallario
SC-23.1
bob.vallario@science.doe.gov

(PI Contact)
Dr. Shih-Chieh Kao
kaos@ornl.gov

Funding
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Integrated Assessment Program, and Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05- 00OR22725.

Publications
Rastogi, D., S.-C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, N. Singh, and V. G. Anantharaj. 2017. “Effects of Climate Change on Probable Maximum Precipitation: A Sensitivity Study over the Alabama-Coosa-Tallapoosa River Basin,” J. Geophys. Res.-Atmos. 122:4808-4828. DOI: 10.1002/2016JD026001.

Related Links
Reference link

Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)