U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding Complexities in Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use
Published: October 09, 2017
Posted: January 19, 2018

The Science
Population, income and bioenergy growth will increase unrenewable water use for agriculture. Pursuing sustainable irrigation - targeting future water security - cannot be done in isolation because of its interactions with other sustainable development goals. Researchers from Purdue University and University of New Hampshire, under a Cooperative Agreement led by Stanford University, explored tradeoffs within this water, food, and energy nexus. Scientists found that restricting unsustainable water use for irrigation in the absence of significant efficiency gains could negatively impact global food security and terrestrial carbon emissions.

The Impact
This analysis of sustainable irrigation highlights the potentially unanticipated consequences of larger-scale adaptation measures. The multi-scale modeling approach developed in this study helps identify the fine-scale, heterogeneous local responses to macro-level shocks, as well as the aggregated feedback to the system. This method permits us to deepen the understanding of the complex interconnection between water, land, food, energy and climate, and can facilitate more effective decision-making. 

Summary
A grid-resolving partial equilibrium economic model is developed and coupled with a fine-scale hydrological model to assess the extent of unsustainable irrigation at the sub-basin level. Using this integrated modeling framework, researchers simulated the outcomes of eliminating unsustainable irrigation under a variety of scenarios that interact agricultural productivity growth with adaptations to move physical and virtual water. The study shows that without significant simultaneous improvements in the productivity of irrigation water, it could cause a rise in food prices and additional cropland expansion. This in turn would lead to a further 800 thousand undernourished people, and an additional 0.87 gigatons of carbon emissions.

Contacts (BER PM)
Bob Vallario
Integrated Assessment Research
Bob.Vallario@science.doe.gov

PI Contact)
John Weyant
Stanford University
weyant@stanford.edu

Funding
This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Integrated Assessment Research Program, Grant no. DE-SC0005171 and Program on Coupled Human and Earth Systems (IARP 61351720-124215).

Publications
Liu, J., Hertel, T.W., Lammers, R., Prusevich, A., Baldos, U., Grogan, D. and Frolking, S. “Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use,” Environmental Research Letters, 12 (2017) 104009, 10.1088/1748-9326/aa88db

Related Links
Paper and Supplemental Material

Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)