U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Quantifying Non-Renewable Groundwater Return-Flow and Re-Use in Global Irrigation
Published: March 08, 2017
Posted: January 19, 2018

Global hydrological simulations quantify impact of irrigation return flows on downstream water supply.

The Science
Irrigation is critical to global food production, and groundwater supplies nearly half of all irrigation water. Groundwater levels are declining in aquifers in important agricultural regions—including parts of India, China, and the U.S. Runoff and percolation resulting from inefficient use of this unsustainable (non-renewable) groundwater withdrawal increase surface water supply in several major agricultural regions, including the High Plains aquifer in North America, the North China Plain, and parts of north-west India.  One proposed solution to the over-extraction of groundwater resources is to increase irrigation efficiency.  Researchers under a multi-institutional Cooperative Agreement led by Stanford University examined the implications of hydrological simulation modeling that can quantify the downstream impacts of improving irrigation efficiency and reducing non-renewable groundwater use.

The Impact
Inefficient use of irrigation water leads to large amounts of non-renewable groundwater entering surface water supply by way of agricultural runoff, where it can be re-used for irrigation downstream. This local and downstream re-use of non-renewable groundwater amounts to about 10% of total global irrigation water use.  Reduced pumping of non-renewable groundwater therefore reduces the water supply not only directly for the groundwater users, but also indirectly for those downstream who rely on the re-use of this water through the surface water system. Improving irrigation efficiency by reducing unintended runoff significantly decreases dry-season river flow, and thus water supply, in major irrigated-agriculture river basins around the world.

Researchers constructed global hydrological simulations to quantify the contribution of irrigation return flow to downstream river discharge. They used a gridded global water balance model which simulates global irrigation water demand and supply, and tracks that ‘inefficient’ fraction of applied irrigation water that percolates to groundwater or runs off the land surface. They found that that a significant fraction of unsustainable groundwater withdrawn for irrigation, but ‘lost’ to inefficiencies, is re-used for downstream irrigation. They also found that ecologically important river low-flows can be highly dependent on ‘inefficient’ return flows from non-renewable groundwater use across many agricultural regions.  These results highlight the need for careful consideration of both the potential benefits (e.g. reduced water demand) and negative impacts (e.g. reduced ecological low-flows) of changing irrigation efficiencies when searching for solutions to water stress challenges.

Contacts (BER PM)
Bob Vallario
Integrated Assessment Research

(PI Contact)
John Weyant
Stanford University

This work was supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, Integrated Assessment Research Program, Grant no. DE-SC0005171.

Grogan D, D Wisser, A Prusevich, RB Lammers, S Frolking. “The use and re-use of unsustainable groundwater for irrigation: A global budget,” Environmental Research Letters. 12 (2017) 034017. doi: 10.1088/1748-9326/aa5fb2.

Related Links
Reference link and supplemental material

Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)