U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Sunlight Stimulates Microbial Respiration of Organic Carbon
Published: October 03, 2017
Posted: January 17, 2018

Understanding the role of microorganisms in elemental cycling in the Arctic.

The Science
Sunlight and microbes interact to degrade dissolved organic carbon (DOC) in surface waters, but scientists cannot currently predict the rate and extent of this degradation in either dark or light conditions. A recent study helps explain how sunlight alters organic matter composition.

The Impact
The rates microbes can process DOC is likely governed by a combination of the abundance and instability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize DOC that has been exposed to sunlight. This new information could help develop more accurate methods for assessing past climate.

Summary
Photochemical processing of DOC likely supplies about one-third of the CO2 released from surface waters in the Arctic, by either directly mineralizing DOC to CO2 or indirectly altering DOC chemical composition and, in turn, rates of microbial respiration. At present, scientists cannot predict the rate and extent of this degradation in either dark or light conditions. A team of researchers from University of Michigan, Woods Hole Oceanographic Institution, Oregon State University, and EMSL, the Environmental Molecular Science Laboratory, a DOE Office of Science user facility, combined advanced techniques to characterize microbial and DOC composition. The researchers characterized outputs of short-term photochemical experiments using Fourier-Transform Ion Cyclotron Resonance mass spectrometry at EMSL along with measures of microbial activity, community composition, and gene expression. In dark conditions, they found microbes native to deep permafrost, or surface organic layer soils, degraded the DOC that was most abundant in either soil. They found sunlight exposure either produced or removed the abundant DOC used by microbes, which induced changes to key metabolic steps taken by the native microbial communities to adapt to and degrade the light-altered DOC. Alteration of permafrost DOC by sunlight to compounds used by microbes results in a two-fold increase in respiration rates, suggesting that when permafrost DOC is exported to sunlit surface waters it can be rapidly respired to CO2. The coupled photochemical and biological degradation of permafrost DOC may be an increasingly important component of the Arctic carbon budget as temperatures increase. The new findings could be used to develop more accurate methods for assessing climate processes.

BER PM Contact
Paul Bayer, SC-23.1, 301-903-5324

PI Contact
Collin P. Ward
University of Michigan
cpward@umich.com

Rose M. Cory
University of Michigan
rmcory@umich.edu

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility. Funding was provided by the National Science Foundation (NSF) and Camille and Henry Dreyfus Foundation.

Publication
C.P. Ward, S.G. Nalven, B.C. Crump, G.W. Kling, and R.M. Cory. “Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration.” Nature Communications (2017). DOI: 10.1038/s41467-017-00759-2

Related Links
Sunlight Stimulates Microbial Respiration of Organic Carbon on the EMSL website

Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)