U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


An Observational Benchmark and Scaling Theory for Environmental Controls on Soil Decomposition
Published: October 30, 2017
Posted: December 14, 2017

Global benchmark shows that existing Earth system models underestimate vulnerability of soils to increased temperature.

The Science  
DOE supported researchers combined global maps of productivity, soil carbon, and environment to demonstrate a basic pattern of environmental controls on soil decomposition, which is that soil carbon temperature sensitivity is highest in cold regions. From this, they derived a theory to explain the pattern as an outcome of the scaling of soil freeze-thaw processes in time and depth, and apply the benchmark to existing ESMs and newer land modeling approaches.

The Impact
The study shows via a global benchmark, that existing models systematically underestimate the temperature sensitivity of soil carbon decomposition, and that the solution to this underestimation is to take into account the way in which surface soils freeze.

Summary
The results show that the sensitivity of soil carbon to temperature is highest in cold climates, even for surface rather than permafrost layers, and that this global pattern can most simply be explained as an outcome of the way in which soils experience freeze-thaw processes. The team also show that all existing (CMIP5-era) ESMs systematically underestimate this temperature sensitivity, whereas newer approaches such as the CLM4.5 representation that forms the basis of the E3SM soil biogeochemistry, can match observations. Thus, our approach shows two major impacts: (1) that the single most important relationship that soil models must consider is the physical scaling of freeze and thaw and (2) existing estimates systematically underestimate the long-term temperature sensitivity of surface soil carbon.

Contacts (BER PM)
Renu Joseph
SC-23.1
renu.joseph@science.doe.gov (301-903-9237)

Dorothy Koch
SC-23.1
Dorothy.koch@science.doe.gov (301-903-0105)

Daniel Stover
SC-23.1
Daniel.Stover@science.doe.gov (301-903-0289)

(PI Contact)
Charles Koven
Staff Scientist, Lawrence Berkeley National Laboratory
cdkoven@lbl.gov, 510.486.6724

Funding
CDK received support from the Regional and Global Climate Modeling program through the BGC-Feedbacks SFA and the Terrestrial Ecosystem Sciences and Earth System Modeling programs through the Next Generation Ecosystem Experiments-Tropics (NGEE-Tropics) project of the Biological and Environmental Research (BER) Program in the U. S. Department of Energy Office of Science.

Publications
Koven, C. D., et al. “Higher Climatological Temperature Sensitivity of Soil Carbon in Cold Than Warm Climates.” Nature Climate Change 7, 817-822 (2017). [DOI: 10.1038/NCLIMATE3421]. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Next-Generation Ecosystem Experiments (NGEE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)