Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program



How Bacteria Produce Manganese Oxide Nanoparticles
Published: September 29, 2017
Posted: November 21, 2017

Structural characterization of bacterial enzyme complex sheds light on manganese biomineralization and other elemental cycles.

The Science
Bacteria that produce manganese (Mn) oxides are extraordinarily skilled engineers of nanomaterials they contribute significantly to global biogeochemical cycles. However, mineralization mediated by these organisms is poorly understood because enzymes involved in these processes are largely uncharacterized. A recent study revealed for the first time the structure of Mnx—a bacterial enzyme complex responsible for Mn biomineralization—and the Mn oxide nanoparticles it produces.

The Impact
An improved understanding of biomineralization enzymes may allow scientists to engineer proteins for applications such as environmental remediation and bioenergy production. The novel analytical tools used in this study could also be applied to solve the structure of other enzymes that play a critical role in global biogeochemical cycles, especially enzymes intractable by more conventional nuclear magnetic resonance, crystallography, or electron microscopy approaches.

Summary
Mn is a very important transition metal for all life. Mn cycling between its reduced primarily soluble form (Mn(II)) and its oxidized insoluble forms (Mn(III,IV) oxides) is coupled in myriad ways to many elemental cycles. Research has established Mn(II) is oxidized to Mn(III,IV) minerals primarily through activities of bacteria and fungi. Yet, the biomineralization enzymes produced by these organisms are very challenging to study because it is difficult to isolate and purify them. To address this challenge, researchers from the Oregon Health & Science University, the Ohio State University, and EMSL, the Environmental Molecular Sciences Laboratory, used state-of-the-art mass spectrometry, ion mobility, and electron microscopy to solve the previously uncharacterized structure of Mnx and the Mn oxide nanoparticles it produces. The researchers used high resolution mass spectrometry and atomic resolution aberration-corrected scanning transmission electron microscopy at EMSL, a DOE Office of Science user facility. These data provide critical structural information for understanding Mn biomineralization, which is potentially well suited for environmental remediation applications. Moreover, the new insights into the structure of Mnx may inform ongoing research into the mechanisms of photosynthesis and catalytic oxygen production.

Contacts
(BER PM)

Paul Bayer, SC-23.1, 301-903-5324

(PI Contacts)
Bradley Tebo
Oregon Health & Science University
tebob@ohsu.edu

Vicki Wysocki
Ohio State University
wysocki.11@osu.edu

Ljiljana Paša-Tolić
EMSL
ljiljana.pasatolic@pnnl.gov

Funding
This work was supported by the U.S. Department of Energy’s Office of Science (Office of Biological and Environmental Research), including support of the Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility. Part of the project was also funded by the National Science Foundation (NSF), the National Institutes of Health, and an NSF Postdoctoral Research Fellowship in Biology Award.

Publication
Romano, C.A., M. Zhou, Y. Song, V.H. Wysocki, A.C. Dohnalkova, L. Kovarik, L. Paša-Tolić, and B, M. Tebo. 2017. “Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx.” Nature Communications DOI: 10.1038/s41467-017-00896-8.

Related Links
How Bacteria Produce Manganese Oxide Nanoparticles on EMSL’s website

Topic Areas:

  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Cross-Cutting: Scientific Literature

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

Recent Highlights

Nov 21, 2017
CrunchFlow Receives 2017 R&D 100 Award
Powerful software simulates how chemical reactions occur and change as fluids travel underground. [more...]

Nov 01, 2017
Assembly of Microbial Communities Affects Biogeochemistry
Dispersal varies the relationship between microbial communities and biogeochemical function.
more...]

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]

Sep 05, 2017
A Regional Model for Uranium Redox State and Mobility in the Environment
Redox variable sediments mediate uranium mobility in the upper Colorado River Basin. [more...]

Aug 26, 2017
New Approach to Characterize Natural Organic Matter in Belowground Sediments
Efforts to characterize carbon stored in sediments below 1 meter are critical for understanding t [more...]